Происхождение полимеров. Природный полимер - формула и применение

Если связь между макромолекулами осуществляется с помощью слабых сил Ван-Дер-Ваальса , они называются термопласты , если с помощью химических связей - реактопласты . К линейным полимерам относится, например, целлюлоза , к разветвлённым, например, амилопектин , есть полимеры со сложными пространственными трёхмерными структурами.

В строении полимера можно выделить мономерное звено - повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид (-СН 2 -CHCl-) n , каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами или гетерополимерами .

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки , нуклеиновые кислоты , полисахариды , каучук и другие органические вещества . В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров . Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли-: поли этилен, поли пропилен, поли винилацетат и т. п.

Энциклопедичный YouTube

  • 1 / 5

    Особые механические свойства

    • эластичность - способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки);
    • малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло);
    • способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок).

    Особенности растворов полимеров:

    • высокая вязкость раствора при малой концентрации полимера;
    • растворение полимера происходит через стадию набухания.

    Особые химические свойства:

    • способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.).

    Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают гибкостью.

    Классификация

    По химическому составу все полимеры подразделяются на органические , элементоорганические , неорганические .

    • Органические полимеры.
    • Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель - кремнийорганические соединения.
    • Неорганические полимеры . Они не содержат в повторяющемся звене связей C-C, но способны содержать органические радикалы , как боковые заместители.

    Следует отметить, что в технике полимеры часто используются как компоненты композиционных материалов , например, стеклопластиков . Возможны композиционные материалы, все компоненты которых - полимеры (с разным составом и свойствами).

    По форме макромолекул полимеры делят на линейные, разветвлённые (частный случай - звездообразные), ленточные, плоские, гребнеобразные, полимерные сетки и так далее.

    Полимеры подразделяют по полярности (влияющей на растворимость в различных жидкостях). Полярность звеньев полимера определяется наличием в их составе диполей - молекул с разобщённым распределением положительных и отрицательных зарядов. В неполярных звеньях дипольные моменты связей атомов взаимно компенсируются. Полимеры, звенья которых обладают значительной полярностью, называют гидрофильными или полярными . Полимеры с неполярными звеньями - неполярными , гидрофобными . Полимеры, содержащие как полярные, так и неполярные звенья, называются амфифильными . Гомополимеры, каждое звено которых содержит как полярные, так и неполярные крупные группы, предложено называть амфифильными гомополимерами .

    По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные . Термопластичные полимеры (полиэтилен , полипропилен , полистирол) при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Этот процесс обратим. Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки (например, вулканизация) цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения.

    Природные органические полимеры образуются в растительных и животных организмах. Важнейшими из них являются полисахариды , белки и нуклеиновые кислоты , из которых в значительной степени состоят тела растений и животных и которые обеспечивают само функционирование жизни на Земле. Считается, что решающим этапом в возникновении жизни на Земле явилось образование из простых органических молекул более сложных - высокомолекулярных (см. Химическая эволюция).

    Типы

    Синтетические полимеры. Искусственные полимерные материалы

    Человек давно использует природные полимерные материалы в своей жизни. Это кожа , меха , шерсть , шёлк , хлопок и т. п., используемые для изготовления одежды, различные связующие (цемент , известь , глина), образующие при соответствующей обработке трёхмерные полимерные тела, широко используемые как строительные материалы . Однако промышленное производство цепных полимеров началось в начале XX века, хотя предпосылки для этого появились ранее.

    Практически сразу же промышленное производство полимеров развивалось в двух направлениях - путём переработки природных органических полимеров в искусственные полимерные материалы и путём получения синтетических полимеров из органических низкомолекулярных соединений.

    В первом случае крупнотоннажное производство базируется на целлюлозе . Первый полимерный материал из физически модифицированной целлюлозы - целлулоид - был получен ещё в середине XIX века. Крупномасштабное производство простых и сложных эфиров целлюлозы было организовано до и после Второй мировой войны и существует до настоящего времени. На их основе производят плёнки , волокна , лакокрасочные материалы и загустители . Необходимо отметить, что развитие кино и фотографии оказалось возможным лишь благодаря появлению прозрачной плёнки из нитроцеллюлозы .

    Производство синтетических полимеров началось в 1906 году, когда Лео Бакеланд запатентовал так называемую бакелитовую смолу - продукт конденсации фенола и формальдегида , превращающийся при нагревании в трёхмерный полимер. В течение десятилетий он применялся для изготовления корпусов электротехнических приборов, аккумуляторов , телевизоров , розеток и т. п., а в настоящее время чаще используется как связующее и адгезивное вещество.

    Благодаря усилиям Генри Форда , перед Первой мировой войной началось бурное развитие автомобильной промышленности сначала на основе натурального, затем - также и синтетического каучука . Производство последнего было освоено накануне Второй мировой войны в Советском Союзе, Англии, Германии и США. В эти же годы было освоено промышленное производство полистирола и поливинилхлорида , являющихся прекрасными электроизолирующими материалами, а также полиметилметакрилата - без органического стекла под названием «плексиглас» было бы невозможно массовое самолётостроение в годы войны.

    После войны возобновилось производство полиамидного волокна и тканей (капрон , нейлон), начатое ещё до войны. В 50-х годах XX века было разработано полиэфирное волокно и освоено производство тканей на его основе под названием лавсан или полиэтилентерефталат . Полипропилен и нитрон - искусственная шерсть из полиакрилонитрила , - замыкают список синтетических волокон, которые использует современный человек для одежды и производственной деятельности. В первом случае эти волокна очень часто сочетаются с натуральными волокнами из целлюлозы или из белка (хлопок , шерсть , шёлк). Эпохальным событием в мире полимеров явилось открытие в середине 50-х годов XX столетия и быстрое промышленное освоение катализаторов Циглера-Натта , что привело к появлению полимерных материалов на основе полиолефинов и, прежде всего, полипропилена и полиэтилена низкого давления (до этого было освоено производство полиэтилена при давлении порядка 1000 атм.), а также стереорегулярных полимеров, способных к кристаллизации. Затем были внедрены в массовое производство полиуретаны - наиболее распространенные герметики,

    Термин "полимерия" был введён в науку И. Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Т. о., содержание термина не соответствовало современным представлениям о полимерах. "Истинные" синтетические полимеры к тому времени ещё не были известны.

    Ряд полимеров был, по-видимому, получен ещё в первой половине XIX в. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к "осмолению" продуктов основной химической реакции, т. е., собственно, к образованию полимеров (до сих пор полимеры часто называли "смолами"). Первые упоминания о синтетических полимерах относятся к 1838 () и 1839 (полистирол).

    Химия полимеров возникла только в связи с созданием А. М. Бутлеровым теории химического строения (начало 1860-х гг.). А. М. Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. А.М. Бутлеров предложил рассматривать способность непредельных соединений к полимеризации в качестве критерия их реакционной способности. Отсюда берут свое начало классические работы в области полимеризационных и изомеризационных процессов А. Е. Фаворского, В. Н. Ипатьева и С. В. Лебедева. От исследований нефтяных углеводородов В. В. Марковниковым и затем Н. Д. Зелинским протягиваются нити к современным работам по синтезу всевозможных мономеров из нефтяного сырья.

    Здесь следует отметить, что с самого начала промышленне производство полимеров развивалось по двум направлениям: путем переработки природных полимеров в искусственные полимерные материалы и получения синтетических полимеров из органических низкомолекулярных соединений. В первом случае крупнотоннажное производство базируется на целлюлозе, первый материал из физически модифицированной целлюлозы – целлофан, был получен в 1908 г.

    Наука о синтезе полимеров из мономеров оказалась куда более масштабным явлением в плане стоящих перед учеными задач.

    Несмотря на изобретение в начале XX века способа получения фенолформальдегидных смол Бакеландом не существовало понимания процесса полимеризации. Лишь в 1922 г. немецкий химик Герман Штаудингер выдвинул определение макромолекула – длинной конструкции из атомов, связанных ковалентными связями. Он же первым установил взаимосвязь между молекулярной массой полимера и вязкостью его раствора. Впоследствие американский химик Герман Марк исследовал форму и размер макромолекул в растворе.

    Тогда же в 1920-1930-е гг. благодаря передовым работам Н. Н. Семенова в области цепных реакций было обнаружено глубокое сходство механизма полимеризации с цепными реакциями, которые изучал Н. Н. Семенов.

    В 30-х гг. было доказано существование свободнорадикального (Г.Штаудингер и др.) и ионного (Ф.Уитмор и др.) механизмов полимеризации.

    В СССР в середине 1930-х гг. С.С. Медведев сформулировал понятие «инициирование» полимеризации как результатк распада перекисных соединений с образованием радикалов. Им же были оценены количественно реакции передачи цепи как процессы регулирования молекулярной массы. Исследования механизмов свободнорадикальной полимеризации проводились вплоть до 1950-х гг.

    Большую роль в развитии представлений о поликонденсации сыграли работы У.Карозерса, который ввел в химию высокомолекулярных соединений понятия функциональности мономера, линейной и трехмерной поликонденсации. Он же в 1931 синтезировал совместно с Дж.А.Ньюландом хлоропреновый каучук (неопрен) и в 1937 разработал метод получения полиамида для формования волокна типа найлон.

    В 1930-е гг. развивалось и учение о структуре полимеров, А.П.Александров впервые развил в 30-х гг. представления о релаксационной природе деформации полимерных тел; В.А.Каргин установил в конце 30-х гг. факт термодинамической обратимости растворов полимеров и сформулировал систему представлений о трех физических состояниях аморфных высокомолекулярных соединений.

    До Второй мировой войны наиболее развитые страны освоили промышленное производство СК, полистирола, поливинилхлорида и полиметилметакрилата.

    В 1940-е гг. американский физико-химик Флори внес значительный вклад в теорию растворов полимеров и статистическую механику макромолекул, Флори создал методы определения строения и свойств макромолекул из измерений вязкости, седиментации и диффузии.

    Эпохальным событием в химии полимеров стало открытие К. Циглером в 1950-е гг. металлокомплексных катализаторов, что привело к появлению полимеров на основе полиолефинов: полиэтилена и полипропилена, которые стали получать при атмосферном давлении. Затем были внедрены в массовое производство полиуретаны (в частности поролон), а также полисилоксаны.

    В 1960-1970-е гг. получены уникальные полимеры – ароматические полиамиды, полиимиды, полиэфиркетоны, содержащие в своей структуре ароматические циклы, и характеризующиеся огромной прочностью и термостойкостью. В частности, в 1960-е гг. Каргин В.А. и Кабанов В.А. положили начало новому виду полимерообразования – комплексно-родикальной полимеризации. Ими было показано, что активность непредельных мономеров в реакциях радикальной полимеризации может быть значительно повышена путем связывания их в комплексы с неорганическими солями. Так были получены полимеры неактивных мономеров: пиридина, хинолина и др.

    Первое знакомство человека с каучуком произошло в XV веке. На о. Гаити Х. Колумб и его спутники видели ритуальные игры туземцев с мячами из эластичной древесной смолы. По запискам Шарлю Мари де ля Кондамина, опубликованным в 1735 г. европейцы узнали, что дерево, из которого добывается каучук, на языке перуанских индейцев называется «Heve». При надрезании коры дерева выделяется сок, который по-испански назван латексом. Латекс применяли для пропитки тканей.

    Во начале XIX века началось исследование каучука. В 1823 г. англичанин Карл Макинтош организовал производство непромокаемых прорезиненных тканей и плащей на их основе. Англичанин Томас Гэнкок в 1826 г. открыл явление пластикации каучука. Потом в пластифицированный каучук стали вводить различные добавки и возникла технология наполненных резиновых смесей. В 1839 г. Американец Чарльз Гудьир открыл способ получения нелипкой прочной резины путем нагревания каучука с оксидом свинца и серой. Процесс был назван вулканизацией. Во второй половине XIX века спрос на натуральный каучук быстро нарастает. В 1890-е гг. появляются первые каучуковые шины. Возникает большое количество каучуковых плантаций в различных жарких странах (в настоящее время Индонезия и Малайзия) лидируют в производстве натурального каучука.

    В 1825 г. Майкл Фарадей, исследуя пиролиз натурального каучука, установил, что его простейшая формула C 5 H 8 . В 1835 г. немецкий химик Ф.К. Химмли впервые выделил изопрен C 5 H 8 . В 1866 г. французский химик Пьер Бертло получил бутадиен, пропуская через нагретую железную трубку смесь этилена и ацетилена.

    В 1860-1870-х гг. А.М. Бутлеров выяснил структуру многих олефинов и многие из них заполимеризовал, в частности изобутилен под действием серной кислоты.

    В 1878 г. русский химик А.А. Кракау открыл способность полимеризации непредельных соединений под действием щелочных металлов.

    В 1884 г английский химик У. Тилден доказал, что получал изопрен при термическом разложении скипидара, он же установил состав и строение изопрена, высказал мысль о том, что склонность изопрена к полимеризации может быть использована для полученя синтетического каучука. В 1870-е гг. французский химик Г. Бушарда выделил из продуктов термического разложения каучука изопрен, действием на него высокой температуры и соляной кислоты он получил каучукообразный продукт.

    В 1901-1905 гг. В. Н. Ипатьев синтезировал бутадиен из этилового спирта при высоких 400-500 атм давлениях. Он же сумел первым в 1913 г. заполимеризовать этилен, что не удавалось до этого никому из исследователей.

    В 1908 г. М.К. Кучеров получил натрий-изопреновый каучук (результат опубликовал в 1913 г.).

    В 1909 г. С.В. Лебедев впервые продемонстрировал каучук полученный из дивинила.

    Еще в 1899 г И. Л. Кондаков разработал метод получения диметилбутадиена и доказал, что последний способен превращаться в каучукоподобное вещество под воздействием света, а также некоторых реагентов, например натрия. На основе работ Кондакова в Германии в 1916 г. Фриц Гофман организовал производство т.н. метилкаучука: твёрдого ("Н") и мягкого ("W") синтетического каучука.

    В 1910 г Карл Дитрих Гарриес запатентовал способ полимеризации изопрена под воздействием металлического натрия. Он же в 1902 г. разработал метод озонирования каучука и этим методом установил строение различных видов каучуков.

    В 1911 г. И. И. Остромысленский получил бутадиен из ацетальдегида. В 1915 г. Бызов Б. В. получил патент на получение бутадиена пиролизом нефти.

    Начиная еще со второй половины XIX века, усилия многих химиков разных стран были направлены на изучение способов получения мономеров и способов их полимеризации в каучукообразные соединения. В 1911 г И. И. Остромысленский предложил получение бутадиена из спирта в три стадии с выходом 12%. В России эта работа была оценена очень высоко. Дело в том, что российские химики в противовес западным химикам стремились получить синтетический каучук из бутадиена, а не изопрена. Возможно, что именно благодаря этому и наличию в России большой спиртовой базы, в России стало возможно создание технической базы по производству синтетического каучука.

    В 1926 г. ВСНХ СССР объявил конкурс на разработку технологии получения синтетического каучука, в соответствии с условиями которого 1 января 1928 г. необходимо было представить описание процесса и не менее 2 кг каучука полученного по этому способу. Наиболее разработанными оказались проекты Лебедева С. В. и Бызова Б.В. И в той, и в другой проектных работах предусматривалось получение синтетического каучука из бутадиена. Лебедев предлагал получение бутадиена из спирта в одну стадию на разработанном им катализаторе, обладающим дегидрирующими и дегитратирующими свойствами. Бызов предлагал получение бутадиена из углеводородов нефти. Несмотря на большие достижения российских и советских химиков в области переработки нефти, сырьевой базы для производства бутадиена по методу Бызова не было. Поэтому в январе 1931 года Совет труда и обороны принял решение построить три больших однотипных завода СК по методу Лебедева. Был создан Ленинградский опытный завод «Литер Б» (ныне ВНИИСК) на котором в 1931 году была получена первая партия дивинильного каучука. В 1932-1933 гг. заработали заводы СК в Ярославле, Воронеже, Ефремове, Казани.

    В 1941 г. был пущен завод хлоропренового каучука в Ереване.

    В 1935 г. наступила новая эра в про­изводстве синтетических каучуков - их стали делать из сополимеров, полу­чаемых радикальной полимеризацией 1,3-бутадиена в присутствии стирола, акрилонитрила и других соединений. В 1938 было организовано промышленное производство бутадиен-стирольных каучуков в Германии, в 1942 - крупное производство синтетического каучука в США.

    Здесь следует отметить, что после 1945 г. наметился постепенный отход от получения бутадиена из пищевого спирта с постепенным переходом к получению мономеров из нефти.

    В 1948 г. Коротков установил, что физико-механические свойства полимера улучшаются с увеличением содержания звеньев присоединения в положения цис-1,4, наибольшее количество цис-звеньев образуется в присутствии литийорганических соединений.

    В 1955 г. К. Циглер открыл новые каталитические системы, ведущие процесс полимеризации по ионному механизму с получением полимерных материалов, подобных тем, которые получены в присутствии лития. В дальнейшем эти исследования были углублены в Италии в лаборатории Джулио Натта.

    Отечественный промышленный полиизопрен, полученный на литиевых катализаторах, был назван СКИ, а полученный в присутствии каталитических систем Циглера-Натта был известен под аббревиатурой СКИ-3.

    В 1956 г. был предложен метод получения стереорегулярных полибутадиеновых каучуков (СКД), которые по морозостойкости, устойчивости к истиранию превосходили резины, полученные из натурального каучука и СКИ-3.

    Были получены полимеры на основе двойных сополимеров этилена и пропилена – СКЭПы (1955-1957). В этих каучуках отсутствуют двойные связи в структуре полимера, по этой причеине резины на их основе оказываются очень устойчивыми в агрессивных средах, вдобавок они прочны на истирание.

    В 1960-е гг. был освоен промышленный выпуск каучуков СКД и СКИ-3 в Стерлитамаке, Тольятти, Волжске. В целом все эти предприятия использовали в качестве исходного сырья мономеры, полученные уже из нефти, а не из спирта.

    Сополимеры бутадиена и изопрена начали быст­ро вытеснять натуральный каучук в произ­водстве автомобильных шин. Так, если в 1950 доля К. с. в общем объёме производства натурального и синтетического каучуков составляла около 22%, в 1960 около 48%, то к 1971 она возросла до ~60% (5 млн. т синтетического и 3 млн. т натурального каучука), в 1985 г. в мире было произведено 12 млн т синтетического каучука и толь­ко 4 млн т натурального. К началу 1970-х гг. сложилось мнение, что синтетические каучуки вытеснят натуральные. Однако в результате нефтяного эмбарго в 1973 г. цены на нефть резко возрасли и одновременно в Малайзии были достигнуты большие успехи в производстве натурального каучука, позволявшие резко снизить его цену. И по сей день избавиться от натурального каучука в шинной промышленности не удается. Так, Японии, не имеющей собственных природных запасов нефти, выгоднее закупать натуральный каучук в Малайзии и Индонезии. России же, располагающей большими запасами нефти, ни в коем случае не следует пренебрегать имеющимися технологиями и мощностями по производству синтетического каучука.

    Напряженные разработки в области технологии СК в СССР и Германии до Второй мировой войны объснялись тем, что указанные страны понимали, что в случае войны они будут отрезаны от поставок натурального каучука. США подходило к вопросу по другому, США стремилось создать у себя стратегический запас натурального каучука. Как показала жизнь, запасов оказалось недостаточно, когда Япония вторглась в 1941 г. в Юго-Восточную Азию. Из уже написанного ясно, что каучук играл важную роль в мировой политике.

    Фенолформальдегидные смолы.

    Первый в мире процесс промышленного производства полностью синтетического полимера был запатентован Л. Бакеландом в 1907 г. Л. Бакеланд запатентовал т.н. бакелитовую смолу – продукт конденсации фенола и формальдегида, превращающийся при нагревании в трехмерный полимер. В течение десятилетий бакелит использовался в качестве материала для корпусов электротехнических приборов, сейчас используется как связующее и адгезив. Первооткрывателем же реакции между фенолом и формальдегидом был А. Байер, наблюдавший образование смолы в этой реакции еще в 1872 г, но он результатом не заинтересовался. Начиная с 1940-х и до середины 1970-х гг. в связи с появлением новых видов пластмасс доля фенольных смол быстро сокращалась. Но начиная с 1975 г. вновь начался стремительный рост производства этих полимеров для нужд авиации, ракетной техники, космонавтики и др., а также в связи с падением запасов нефти. Дело в том, что фенол получают из каменного угля, запасы которого несравненно превосходят запасы нефти. Кроме того, на основе фенолформальдегидных смол существовал(ет) большой ассортимент материалов для нужд теплоизоляции (ДСП, ДВП), что стало актуальным в борьбе с энергетическим кризисом.

    Полиэтилен и полипропилен.

    Этилен чрезвычайно тяжело полимеризуется. Впервые полимеризация этилена наблюдалась в 1933 г. как побочная реакция. Уже в 1937 г. английские химики разработали первый промышленный способ производства полиэтилена, а в 1946 г. начался выпуск полиэтиленовых бутылок.

    В 1954 г. Карл Циглер и Джулио Натта открыли новый металлоорганический катализатор, благодаря че­му им удалось осуществить ионную полимеризацию полиэтилена при ат­мосферном давлении и температуре 60 °С.

    Они же получили стереорегулярный полипропилен, используя металлокомплексный катализатор.

    Политетрафторэтилен (тефлон).

    Был случайно открыт в 1938 г Р. Планкеттом, который наблюдал спонтанное образование в баллонах с тетрафторэтиленом белой порошкообразной массы. В 1941 г. он запатентовал свою технологию (США, фирма DuPont). В 1954 г. французский инженер Марк Грегор предложил использовать тефлон в качестве покрытий для посуды. Тефлон чрезвычайно инертен химически, а его температура размягчения почти достигает 300 0 С.

    Полистирол.

    В 1866 г. М. Бертло идентифицировал образование твердой массы из стирола при нагревании как процесс полимеризации. В 1946 г. Г. Штаудингер установил механизм этой реакции. Впервые полистирол начали выпускать в Германии в 1931 г.

    Полиметилметакрилат.

    Полиметилметакрилат (ПММА) или плексиглас или оргстекло был создан в 1928 г. В 1933 г. началось производство ПММА в Германии, в 1936 г. ПММА был получен в СССР в НИИ Пластмасс. Полимер широко применяется в авиационной промышленности, в автомобильной промышленности, в строительстве.

    Поливинилхлорид.

    Впервые полимеризацию винилхлорида осуще­ствил в 1872 г. немецкий химик Эйген Бауман. Заслугой этого исследователя стала разработка спо­соба радикальной полимеризации винилхлорида в присутствии органиче­ских пероксидов. Активное практическое использо­вание поливинилхлорида (ПВХ) началось только с середины XX в. Проблема была в том, что чистый ПВХ обладает многими недостатками. При комнатной температуре он очень хру­пок и неэластичен. Кроме того, его трудно растворить или расплавить, а это сильно затрудняет переработку полимера. В 30-х гг. учёным удалось найти стаби­лизаторы, увеличивающие стойкость ПВХ к действию тепла и света. Новый материал - пластифицированный поливинилхлорид получил широкое распространение.

    Первое химическое волокно было получено в 1884 г. французским химиком Н. Шардоне. Основные его исследования связаны с разработкой технологии нитроцеллюлозных волокон (нитрошелка). В 1892 г. был освоен вискозный метод производства волокон. Первые ацетатные волокна начали выпускаться в это же время в Англии и США.

    Поливинилхлоридные волокна начали выпускаться в 1934 г., а волокна на основе сополимера винилхлорида с винилацетатом (виньон) с 1937 г. В 1939г. появились полиамидные волокна, а в 1943 г. полиакрилонитрильные (орлон).

    Создание технологии волокон связано с именами таких ученых как Клоте, еще в 1913 г. предсказавшим возможность получения волокон из поливинилхлорида и Г. Штаудингера, получившего в 1927 г. волокна из расплава полиоксиметилена и полиэтиленоксида.

    В СССР независимо от США и Германии в 1947 г.были опубликованы результаты исследований Кнунянца, Роговина и Ромашевского по получению полиамидных волокон.

    В 1936 г была создана технология синтетического полигексаметиленадипамида, на основе которой в 1939 г. началось производство волокна «найлон».

    В США в 1939 г. началось производство волокна «найлон-6,6» на основе капролактама.

    Технология полиакрилонитрильных волокон разрабатывалась одновременно и независимо в США и Германии, с 1934 г США на заводе фирмы Дюпон начали производство полиамидного волокна. В ФРГ его выпуск начали несколько лет спустя.

    В СССР первая партия волокна «капрон» была выпущена в 1948 г., в 1957 г. начала работать первая установка по получению волокна «лавсан», в 1960-е гг. началось производство волокна «нитрон» на основе полиакрилонитрила.

    В самом начале предприятия по выпуску химических волокон были узкоспециализированными, но по мере наращивания ассортимента волокон расширялся и профиль заводов химических волокон, они выпускали уже по 3-4 вида волокон.

    До середины 1930-х гг. все производство лакокрасочных материалов в нашей стране базировалось на импортном сырье. Только в 1936 г. начало осваиваться производство глифталевых смол для производства соответствующих лаков. Синтез алкидных смол путем взаимодействия глицерина, канифоли и тунгового масла освободил страну от импорта копалов (копал – твердая, похожая на янтарь природная смола).

    В 1947-1948 гг. были пущены цеха по получению мочевино-, меламино-, фенолформальдегидных смол в Москве и Ярославле. Началось освоение пентафталевых смол в которых глицерин был заменен на пентаэритрит.

    Начиная с 1951 г. началось производство лаков на основе перхлорвиниловых смол для авиационной промышленности и железнодорожного транспорта. В 1950-е гг. были созданы спирторастворимые лаки на основе сополимеров бутилметакрилата с метилметакрилатом, метакриламидом, акрилонитрилом, метакриловой кислотой. Было создано несколько десятков марок лаков, грунтовок и эмалей, в т.ч. лак ДС-583, который выпускают и по сей день. Тогда же было освоено производство А-15 – сополимера хлористого винила с винилацетатом. Сочетание А-15 с эпоксидными смолами позволило создать антикоррозионные краски, сократить количество слоев краски при нанесении.

    С 1956 г. автомобильные нитроэмали были полностью заменены на алкидномеламиновые.

    В 1963 г. освоено производство эпоксидных смол для нужд лакокрасочной промышленности, а также противообрастающих покрытий на основе хлорированного поливинилхлорида.

    В 1976-1980 гг. созданы научно-производственные объединения, самостоятельный научно-исследовательский и проектный институт неорганических пигментов и судовых покрытий.

    В настоящее время для изготовления лакокрасочных композиций различного назначения используются почти все виды полимерных материалов: эпоксидные смолы, уретановые эластомеры, хлоропреновые каучуки, фторкаучуки, полиакрилаты, полиорганосилоксаны и др.

    1. Энциклопедия полимеров в 3 т. М.: Изд-во «Советская энциклопедия», 1974-1977.

    2. Химическая энциклопедия в 5 т. М.: Большая Российская энцикл., 1992.

    3. К. Маналов Великие химики в 2 т., М.: Мир, 1986.

    4. О. И. Тужиков История и методология развития полимерной науки и промышленности, Волгоград: 1999.

    5. В. Штрубе. Пути развития химии в 2 т. т.2., М.: Мир, 1984.

    6. Дж. Х. Бристон, Л. Л. Катан Полимерные пленки М.: Химия, 1993.

    7. Ю. Д. Семчиков Высокомолекулярные соединения М.: Издательский центр «Академия», 2003.

    Полимеры

    Однако существует много направлений, позволяющих использовать молекулы-гиганты в мирных целях. Так, если полностью нитрованная целлюлоза - это взрывчатое вещество и может применяться только как таковое, то частично нитрованная целлюлоза (пироксилин ) более безопасна в обращении, и ее можно применять не только в военных целях.

    Американский изобретатель Джон Уэсли Хайятт (1837-1920), пытаясь завоевать приз, установленный за создание заменителя слоновой кости для биллиардных шаров, прежде всего обратил внимание именно на частично нитрованную целлюлозу. Он растворил ее в смеси спирта и эфира, добавил камфору, чтобы новое вещество легче было обрабатывать. К 1869 г. Хайятт получил то, что он назвал целлулоидом , и завоевал приз . Целлулоид был первой синтетической пластмассой - материалом, который можно отливать в формы .

    Однако, как выяснилось, частично нитрованную целлюлозу можно не только формовать в шары, но и вытягивать в волокна и пленки. Французский химик Луи Мари Гиляр Берниго, граф Шар-донне (1839-1924), получил такие волокна, продавливая раствор нитроцеллюлозы через тончайшие отверстия. Растворитель при этом почти сразу же испарялся.

    Из полученных волокон можно было ткать материал, который своим блеском напоминал шелк. В 1884 г. Шардонне запатентовал полученный им искусственный шелк . Шардонне назвал эту ткань рейон - излучающая свет, так как ткань блестела и казалось, что она излучает свет.

    Появлением пластмассовых пленок мы обязаны американскому изобретателю Джорджу Истмену (1854-1932). Истмен увлекался фотографией. Пытаясь упростить процесс проявления, он начал смешивать эмульсию соединений серебра с желатиной, чтобы сделать эту эмульсию сухой. Полученную таким образом смесь можно было хранить, а следовательно, и готовить впрок. В 1884 г. Истмен заменил стеклянные пластинки на целлулоидные.

    Целлулоид невзрывоопасен, но он легко воспламеняется, что может быть причиной пожара, поэтому Истмен начал поиски менее горючих материалов. Когда в целлюлозу вместо нитрогрупп ввели ацетильные группы, полученный продукт остался столь же пластичным, как и нитроцеллюлоза, но он уже не был легко воспламеняющимся. С 1924 г. ацетилцеллюлозные пленки начали использовать в производстве кинофильмов, так как развивающаяся кинопромышленность особенно остро нуждалась в заменителе целлулоида.

    Изучая высокомолекулярные природные соединения, химики рассчитывали не только получить их синтетические аналоги, но и открыть новые типы соединений. Одним из методов синтеза молекул-гигантов является полимеризация мономеров (мономер - вещество, молекулы которого способны реагировать между собой или с молекулами других веществ с образованием полимера).

    Способ объединения мономеров в гигантскую молекулу можно пояснить хотя бы на примере этилена С 2 Н 4 . Напишем структурные формулы двух молекул этилена:


    Представим себе, что атом водорода переместился из одной молекулы в другую, в результате в этой молекуле вместо двойной связи появилась свободная одинарная связь. Свободная связь появилась и у первой молекулы, из которой ушел водород. Поэтому эти две молекулы могут соединиться друг с другом.


    Такая молекула содержит уже четыре углеродных атома и одну двойную связь, как и молекула исходного этилена. Следовательно, при взаимодействии этой молекулы с еще одной молекулой этилена также может произойти перемещение атома водорода и разрыв двойной связи. Образующаяся в результате молекула будет содержать шесть атомов углерода и одну двойную связь. Таким способом можно получить последовательно молекулу с восемью, десятью и более атомами углерода. Фактически так можно получать молекулы почти любой заданной длины.

    Американский химик Лео Хендрик Бакеланд (1863-1944) искал заменитель шеллака - воскоподобного вещества, выделяемого некоторыми видами тропических насекомых. Для этой цели ему необходим был раствор клейкого дегтеобразного вещества. Бакеланд начал с того, что провел полимеризацию фенола и формальдегида и получил полимер, для которого не смог подобрать растворитель. Этот факт привел его к мысли, что такой твердый, практически нерастворимый и, как выяснилось, не проводящий электричество полимер может оказаться ценным материалом. Так, например, из него можно отливать детали, которые легко будет обрабатывать на станках. В 1909 г. Бакеланд сообщил о полученном им материале, который он назвал бакелит . Эта фенолформальдегидная смола была первой синтетической пластмассой , которая по ряду свойств осталась непревзойденной.

    Нашли применение и синтетические волокна. Это направление возглавил американский химик Уоллес Хьюм Карозерс (1896-1937). Вместе с американским химиком Джулиусом Артуром Ньюлендом (1878-1936) он исследовал родственные каучуку эластомеры . Результатом его работ было получение в 1932 г. неопрена - одного из синтетических каучуков .

    Продолжая изучение полимеров, Карозерс попытался полимеризовать смесь диаминов и дикарбоновых кислот и получил волокнистый полимер. Длинные молекулы этого полимера содержат комбинации атомов, подобные пептидным связям (см. разд. «Белки») в белке шелка. Вытягивая эти волокна, получают то, что мы сегодня называем найлоном . Карозерс завершил эту работу буквально накануне преждевременной смерти. Разразившаяся вторая мировая война заставила химиков на время забыть об открытии Карозерса. Однако после окончания войны найлон начал вытеснять шелк и вскоре пришел ему на смену (в частности, в производстве чулочного трикотажа).

    Первые синтетические полимеры были получены, как правило, случайно, методом проб и ошибок, поскольку и о строении молекул-гигантов, и о механизме полимеризации было в ту пору мало что известно. Первым за изучение строения полимеров взялся немецкий химик Герман Штаудингер (1881-1965) и сделал в этой области немало. Штаудингеру удалось раскрыть общий принцип построения многих высокомолекулярных природных и искусственных веществ и наметить пути их исследования и синтеза. Благодаря работам Штаудингера выяснилось, что присоединение мономеров друг к другу может происходить беспорядочно и приводить к образованию разветвленных цепей, прочность которых значительно ниже.

    Начались интенсивные поиски способов получения линейных неразветвленных полимеров. И в 1953 г. немецкий химик Карл Циглер (1898-1973) открыл свой знаменитый титан-алюминиевый катализатор, на котором был получен полиэтилен с регулярной структурой.

    Итальянский химик Джулио Натта (1903-1979) модифицировал катализатор Циглера и разработал метод получения нового класса синтетических высокомолекулярных соединений - стерео-регулярных полимеров . Был разработан метод получения полимеров с заданными свойствами.

    Одним из главных источников основных органических соединений, необходимых для производства новых синтетических продуктов, является нефть . Эта жидкость известна с античных времен, но чтобы использовать ее в больших количествах, необходимо было открыть способ выкачивания нефти из обширных подземных месторождений. Американский изобретатель Эдвин Лаурентин Дрейк (1819-1880) первым в 1859 г. начал бурить нефтяные скважины. Столетие спустя нефть стала основным источником органических соединений, источником тепла и энергии.

    Еще более важным источником органических продуктов является каменный уголь, хотя в век двигателей внутреннего сгорания мы обычно забываем о нем. Русский химик Владимир Николаевич Ипатьев (1867-1952) на рубеже веков начал исследовать сложные углеводороды, содержащиеся в нефти и каменноугольном дегте, и, в частности, изучать их реакции, идущие при высоких температурах. Немецкий химик Фридрих Карл Рудольф Бергиус (1884-1949), используя данные Ипатьева, разработал в 1912 г. практические способы обработки каменного угля и нефти водородом с целью получения бензина.

    Однако мировые запасы ископаемого топлива (каменный уголь плюс нефть) ограничены и невосполнимы. Все прогнозы говорят о том, что наступит день, когда запасы ископаемого топлива будут исчерпаны, и что этот день не за горами, особенно если учесть, что численность населения земли быстро увеличивается, а, следовательно, увеличивается и потребность в энергии .

    Министерство образования и науки Российской Федерации

    федеральное государственное автономное образовательное учреждение

    высшего профессионального образования

    «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

    ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

    Институт природных ресурсов

    Направление подготовки (специальность) Химическая технология

    Кафедра химической технологии топлива и химической кибернетики

    Реферат

    Название реферата:

    Природные полимеры, полимеры вокруг нас “

    по дисциплине «Введение в инженерную деятельность»

    Выполнили студенты гр. 2Д42 Никонова Ньургуйаана

    Прокопчук Кристина

    Даянова Регина

    Реферат принят:

    Мойзес О. Е.

    (Подпись)

    2014г.

    (дата проверки отчета)

    Томск 2014 г.

    1.Введение ……………………………………………………………………………………………..2

    2.Понятие полимера и классификация ………………………………………………….3

    3.Целлюлоза ……………………………………………………………………………………………3

    4.Крахмал…………………………………………………………………………………………………5

    5.Глютин…………………………………………………………………………………………………..6

    6.Казеин……………………………………………………………………………………………………6

    7.Каучук…………………………………………………………………………………………………….7

    8.Резина……………………………………………………………………………………………………7

    9.Синтетические полимеры…………………………………………………………………...9

    10.Свойства и важнейшие характеристики ……………………………………………10

    11. Химические реакции………………………………………………………………………….11

    12.Получение……………………………………………………………………………………………12

    13.Полимеры в сельком хозяйстве…………………………………………………………..12

    14.Полимеры в промышленности…………………………………………………………….14

    Введение

    Термин “полимерия” был введен в науку И.Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Такое содержание термина не соответствовало современным представлениям о полимерах. “Истинные” синтетические полимеры к тому времени еще не были известны.

    Ряд полимеров был, по-видимому, получен еще в первой половине 19 века. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к “осмолению” продуктов основной химической реакции, т.е., собственно, к образованию полимеров (до сих пор полимеры часто называют “смолами”). Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол),

    Химия полимеров возникла только в связи с созданием А.М.Бутлеровым теории химического строения. А.М.Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. Дальнейшее свое развитие наука о полимерах получила главным образом благодаря интенсивным поискам способов синтеза каучука, в которых участвовали крупнейшие учёные многих стран (Г.Бушарда, У.Тилден, немецкий учёный К Гарриес, И.Л.Кондаков, С.В.Лебедев и другие). В 30-х годов было доказано существование свободнорадикального и ионного механизмов полимеризации. Большую роль в развитии представлений о поликонденсации сыграли работы У.Карозерса.

    С начала 20-х годов 20 века развиваются также теоретические представления о строении полимеров Вначале предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория “малых блоков”). Автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г.Штаудингер. Победа идей этого учёного заставила рассматривать полимеры как качественно новый объект исследования химии и физики.

    Понятие полимера и классификация

    Полимеры - химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

    Классификация.

    По происхождению полимеры делятся на:

      природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные

      синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы.

    К природным полимерам, применяемым в полиграфии, относятся: полисахариды (целлюлоза крахмал, камеди), 6елки, глютин, казеин, альбумин), полидиены (каучук).

    Целлюлоза

    Целлюлоза, или клетчатка (от латинского слова «целлула» - клетка), широко распространена в природе. Целлюлоза - это прочное волокнистое вещество органического происхождения, из которого состоит опорная ткань всех растений (растительных клеток).

    Физические свойства целлюлозы

    Целлюлозные волокна отличаются белизной, гибкостью, прочностью, упруго-эластичностью, т.е. способностью обратимо деформироваться без разрушения даже при больших механических напряжениях, нерастворимостью в воде и органических растворителях, неплавкостью.

    Целлюлоза выдерживает нагрев до 150° без разрушения; при более высокой температуре наблюдается деполимеризация целлюлозы и связанная с этим потеря прочности, а при 270° и выше начинается термическое разложение с выделением продуктов распада: уксусной кислоты, метилового спирта, кетонов, в остатке - деготь и уголь.

    Строение целлюлозного волокна.

    Каждое растительное волокно, например хлопковое, льняное, древесное и др. это одна клетка, оболочка которой состоит в основном из целлюлозы. Внутри волокна имеется канал - капилляр, доступный для проникновения воздуха и влаги. Технические волокна целлюлозы имеют длину в среднем 2,5-3 мм (ель, сосна, береза, тополь) и 20-25 мм (лен, хлопок, пенька) при диаметре 25 мкм.

    Целлюлозного растительного волокна имеет фибриллярное строение. Фибриллы - это нитевидные, элементарные рол окна - пачки молекул целлюлозы, прочно соединенных между собой водородными связями, длиной 50-мкм и диаметром 0,1-0,4 мкм. Вероятнее всего, что целлюлоза образует упорядоченную систему нитей - фибрилл, расположенных более плотно вокруг внутреннего канала (капилляра) волокна и более свободно в наружных его слоях. В промежутках между фибриллами находятся мицеллюлозы и лигнин, причем содержание их увеличивается от внутренних слоев клеточной стоики к наружным. Межклеточные пространства целлю­лозы заполнены преимущественно лигнином.

    Главный источник получения целлюлозы - древесина... Древесиной называется внутренняя часть деревьев, лежащая под корой и составляющая основную растительную ткань, из которой образуется ствол дерева.

    Живая клетка растущего дерева имеет оболочку (стенки) из целлюлозы, внутреннюю полость, заполненную протоплазмой, и ядро. Живая клетка способна долиться и образовывать из года в год в растущем дереве новые образования древесины в слое камбия, под корой.

    Живые клетки с течением времени подвергаются одеревенению, приводящему в конечном счете к их полному омертвлению, или одревеснению. Одревеснение клетки происходит главным образом в результате появления в ней лигнина. Древесина на 90-95% состоит, из таких отмерших клеток - волокон, лишенных протоплазмы и ядра, но способных к делению, с внутренней полостью, заполненной воздухом и водой.

    Химические строение и свойства целлюлозы. Целлюлоза - это природный полимер полисахарид, принадлежащий к классу углеводов. Гигантская молекула (макромолекула) целлюлозы построена из многократно повторяющихся структурных звеньев - остатков β-глюкозы (О6Н10О5)п. Число п, или коэффициент полимеризации, показывает, сколько раз структурное звено-остаток β -глюкозы - повторяется в макромолекуле целлюлозы, а следовательно, характеризует длину молекулярной цепи (длину молекулы) и предопределяет ее молекулярный вес.

    Коэффициент полимеризаций у целлюлозы различного происхождения различен. Так, у древесной целлюлозы он равен 3000, у хлопковой - 12 000, у льняной 36 000 (приблизительно). Этим и объясняется большой прочность хлопкового и льняного волокон по сравнении с волокнами древесной целлюлозы.

    Щелочная целлюлоза получается действием на целлюлозу раствора едкого натра. При этом атомы водорода спиртовых гидроксилов частично или полностью заменяются атомами натрия. Щелочная целлюлоза, не теряя своего волокнистого строения, отличается повышенной химической активностью, что и используется при получении простых эфиров целлюлозы, например карбоксиметилцеллюлозы.

    Карбоксиметилцеллюлоза (КМЦ) - это простой эфир целлюлозы и гликолевой кислоты. Промышленный способ изготовления карбоксиметилцеллюлозы основан на взаимодействии щелочной целлюлозы с монохлоруксусной кислотой.

    Гемицеллюлозы - это нечто среднее между целлюлозой и крахмалом. Они также являются полисахаридами. Молекулы гемицеллюлоз построены из остатков моносахаридов: маннозы (гексозы) и ксилозы (пентозы). Гемицеллюлозы не имеют волокнистого строения. Они служат резервным питательным веществом для растений и предохраняют их от инфекций. Гемицеллюлозы набухают в воде и сравнительно легко гидролизуются даже очень разбавленными кислотами, растворяются в 18,5%-ной щелочи. Гемицеллюлозы не являются вредными примесями цел­люлозы, идущей для изготовления бумаги. Наоборот, древесная целлюлоза с большим содержанием гемицеллюлоз легко поддается размолу, а приготовленная из неё бумага имеет повышенную прочность (особенно поверхности), так как гемицеллюлозы являются очень хорошей естественной проклейкой.

    Лигнин - вещество химически неустойчивое: под влиянием света, влаги, кислорода, воздуха и тепла лигнин разрушается, вследствие чего растительные волокна теряют прочность и темнеют. Лигнин, в отличие от целлюлозы, растворяется в разбавленных кислотах и щелочах. На этом свойстве лигнина основаны способы производства целлюлозы из древесины, соломы, тростника и других растительных тканей. Строение лигнина очень сложно и еще недостаточно изучено; известно, что лигнин - природный полимер, структурным звеном которого является остаток очень реакционно-способного ароматического спирта - β -оксикониферилового.

    Полимеры - химические соединения с высокой мол. массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

    По происхождению полимеры делятся на природные (биополимеры), например, белки, нуклеиновые кислоты, смолы природные, и синтетические, например, полиэтилен, полипропилен, феноло-формальдегидные смолы. Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры, например, каучук натуральный); цепи с разветвлением (разветвленные полимеры, например, амилопектин), трехмерной сетки (сшитые полимеры, например, отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (например, поливинилхлорид, поликапроамид, целлюлоза). химический полимер синтетический надмолекулярный

    Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.

    Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми.

    Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.

    В зависимости от состава основной (главной) цепи полимеры, делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например, полиэтилен, полиметилметакрилат, политетрафторзтилен. Примеры гетероцепных полимеров - полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры. Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими. Отдельную группу полимеров образуют неорганические полимеры, например, пластическая сера, полифосфонитрилхлорид.

    Свойства и важнейшие характеристики. Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки, способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластичном состоянии набухать перед растворением; высокая вязкость растворов. Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластичным деформациям.

    Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов, тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических.

    Незакристаллизованные полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластичном и вязкотекучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой - пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеры могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С - эластичный материал, который при температуре -60 °С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °С - твердый стеклообразный продукт, переходящий в высокоэластичное состояние лишь при 100 °С. Целлюлоза - полимер с очень жесткими цепями, соединенными межмолекулярными водородными связями, вообще не может существовать в высокоэластичном состоянии до температуры ее разложения.

    Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол - кристаллическое вещество с температурой плавления около 235 °С, а нестереорегулярный вообще не способен кристаллизоваться и размягчается при температуре около 80 °С.

    Полимеры могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (так называемое сшивание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные, более короткие фрагменты, реакции боковых функциональных групп полимеров с низкомолекулярными веществами, не затрагивающие основную цепь (так называемые полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление поливтилацетата, приводящее к образованию поливинилового спирта. Скорость реакций полимеров с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимера. Наиболее явно это проявляется в случае сшитых полимеров. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.

    Некоторые свойства полимеров, например, растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимер из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.

    Важнейшие характеристики полимеров - химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвленности и гибкости макромолекул, стереорегулярность и другие. Свойства полимеров существенно зависят от этих характеристик.

    Природные полимеры образуются в процессе биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и других методов они могут быть выделены из растительного и животного сырья. Синтетические полимеры получают полимеризацией и поликонденсацией. Карбоцепные полимеры обычно синтезируют полимеризацией мономеров с одной или несколькими кратными углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных), Гетероцепные полимеры получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углеродоэлемента (например, С=О, С=N, N=С=О) или непрочные гетероциклические группировки.

    Сегодня можно говорить по меньшей мере о четырех основных направлениях использования полимерных материалов в сельском хозяйстве. И в отечественной и в мировой практике первое место принадлежит пленкам. Благодаря применению мульчирующей перфорированной пленки на полях урожайность некоторых культур повышается до 30%, а сроки созревания ускоряются на 10-14 дней.

    Использование полиэтиленовой пленки для гидроизоляции создаваемых водохранилищ обеспечивает существенное снижение потерь запасаемой влаги. Укрытие пленкой сенажа, силоса, грубых кормов обеспечивает их лучшую сохранность даже в неблагоприятных погодных условиях. Но главная область использования пленочных полимерных материалов в сельском хозяйстве - строительство и эксплуатация пленочных теплиц. В настоящее время стало технически возможным выпускать полотнища пленки шириной до 16 м, а это позволяет строить пленочные теплицы шириной в основании до 7,5 и длиной до 200 м. В таких теплицах можно все сельскохозяйственные работы проводить механизированно; более того, эти теплицы позволяют выращивать продукцию круглогодично. В холодное время теплицы обогреваются опять-таки с помощью полимерных труб, заложенных в почву на глубину 60-70 см.

    С точки зрения химической структуры полимеров, используемых в тепличных хозяйствах такого рода, можно отметить преимущественное использование полиэтилена, непластифицированного поливинилхлорида и в меньшей мере полиамидов. Полиэтиленовые пленки отличаются лучшей светопроницаемостью, лучшими прочностными свойствами, но худшей погодоустойчивостью и сравнительно высокими теплопотерями. Они могут исправно служить лишь 1-2 сезона. Полиамидные и другие пленки пока применяются сравнительно редко.

    Два остальных главных направления использования полимерных материалов в сельском хозяйстве - строительство, особенно животноводческих помещений, и машиностроение.

    Специальную культуру микробов выращивают на отработанных сульфитных щелоках в специальных ферментаторах при 38° С, одновременно добавляя туда аммиак. Выход кормового белка составляет 50-55%; его с аппетитом поедают свиньи и домашняя птица.

    Традиционно принято многие спортивные мероприятия проводить на площадках с травяным покрытием. Футбол, теннис, крокет... К сожалению, динамичное развитие спорта, пиковые нагрузки у ворот или у сетки приводят к тому, что трава не успевает подрасти от одного состязания до другого. И никакие ухищрения садовников не могут с этим справиться. Можно, конечно, проводить аналогичные состязания на площадках, скажем, с асфальтовым покрытием, но как же быть с традиционными видами спорта? На помощь пришли синтетические материалы. Полиамидную пленку толщиной 1/40 мм (25 мкм) нарезают на полоски шириной 1,27 мм, вытягивают их, извивают, а затем переплетают так, чтобы получить легкую объемную маcсу, имитирующую траву. Во избежание пожара к полимеру загодя добавляют огнезащитные средства, а чтобы из-под ног у спортсменов не посыпались электрическое искры -антистатик. Коврики из синтетической травы наклеивают на подготовленное основание - и вот зам готов травяной корт или футбольное поле, или иная спортивная площадка. А по мере износа отдельные участки игрового поля можно заменять новыми ковриками, изготовленными по той же технологии и того же зеленого цвета.

    Ничего удивительного в том, что эта отрасль - главный потребитель чуть ли не всех материалов, производимых в нашей стране, в том числе и полимеров. Использование полимерных материалов в машиностроении растет такими темпами, какие не знают прецедента во всей человеческой истории. К примеру, в 1976 1. машиностроение нашей страны потребило 800000 т пласт масс, а в 1960 г. - всего 116 000 т. При этом интересно отметить, что еще десять лет назад в машиностроение направлялось 37--38% всех выпускающихся в нашей стране пластмасс, а 1980 г. доля машиностроения в использовании пластмасс снизилась до 28%. И дело тут не в том, что могла бы снизится потребность, а в том, что другие отрасли народного хозяйства стали применять полимерные материалы в сельском хозяйстве, в строительстве, в легкой и пищевой промышленности еще более интенсивно.

    При этом уместно отметить, что в последние годы несколько изменилась и функция полимерных материалов в любой отрасли. Полимерам стали доверять все более и более ответственные задачи. Из полимеров стали изготавливать все больше относительно мелких, но конструктивно сложных и ответственных деталей машин и механизмов, и в то же время все чаще полимеры стали применяться в изготовлении крупногабаритных корпусных деталей машин и механизмов, несущих значительные нагрузки. Еще одна область, специфическая именно для полимеров, где четче всего проявляются их преимущества перед любыми иными материалами, - это область внутренней и внешней отделки.

    Еще одна область применения полимерных материалов в машиностроении, достойная отдельного упоминания, - изготовление металлорежущего инструмента. По мере расширения использования прочных сталей н сплавов все более жесткие требования предъявляются к обрабатывающему инструменту. И здесь тоже на выручку инструментальщику и станочнику приходят пластмассы. Но не совсем обычные пластмассы сверхвысокой твердости, такие, которые смеют поспорить даже с алмазом. Король твердости, алмаз, еще не свергнут со своего трона, но дело идет к тому. Некоторые окислы (например, из рода фианитов), нитриды, карбиды, уже сегодня демонстрируют не меньшую твердость, да к тому же и большую термостойкость. Вся беда в том, что они пока еще более дороги, чем природные и синтетические алмазы, да к тому же им свойствен “королевский порок” - они в большинстве своем хрупки. Вот и приходится, чтобы удержать их от растрескивания, каждое зернышко такого абразива окружать полимерной упаковкой чаще всего из фенолформальдегидных смол. Поэтому сегодня три четверти абразивного инструмента выпускается с применением синтетических смол.

    Таковы лишь некоторые примеры на основные тенденции внедрения полимерных материалов в подотрасли машиностроения. Самое же первое место по темпам роста применения пластических масс среди других подотраслей занимает сейчас автомобильная промышленность. Десять лет назад в автомашинах использовали от 7 до 12 видов различных пластиков, к концу 70-х годов это число перешагнуло за 30. С точки зрения химической структуры, как и следовало ожидать, первые места по объему занимают стирольные пластики, поливинилхлорид и полиолефины. Пока еще немного уступают им, но активно догоняют полиуретаны, полиэфиры, акрилаты и другие полимеры.

    Перечень деталей автомобиля, которые в тех или иных моделях в наши дни изготовляют из полимеров, занял бы не одну страницу. Кузова и кабины, инструменты и электроизоляция, отделка салона и бамперы, радиаторы и подлокотники, шланги, сиденья, дверцы, капот. Более того, несколько разных фирм за рубежом уже объявили о начале производства цельнопластмассовых автомобилей. Наиболее характерные тенденции в применении пластмасс для автомобилестроения, в общем, те же, что и в других подотраслях. Во-первых, это экономия материалов: безотходное или малоотходное формование больших блоков и узлов. Во-вторых, благодаря использованию легких и облегченных полимерных материалов снижается общий вес автомобиля, а значит, будет экономиться горючее при его эксплуатации. В-третьих, выполненные как единое целое, блоки пластмассовых деталей существенно упрощают сборку и позволяют экономить живой труд.

    Кстати, те же преимущества стимулируют и широкое применение полимерных материалов в авиационной промышленности. Например, замена алюминиевого сплава графитопластиком при изготовлении предкрылка крыла самолета позволяет сократить количество деталей с 47 до 14, крепежа - с 1464 до 8 болтов, снизить вес на 22%, стоимость - на 25%. При этом запас прочности изделия составляет 178%. Лопасти вертолета, лопатки вентиляторов реактивных двигателей рекомендуют изготовлять из поликонденсационных смол, наполненных алюмосиликатными волокнами, что позволяет снизить вес самолета при сохранении прочности и надежности. По английскому патенту № 2047188 покрытие несущих поверхностей самолетов или лопастей роторов вертолетов слоем полиуретана толщиной всего 0,65 мм в 1,5-2 раза повышает их стойкость к дождевой эрозии. Жесткие требования были поставлены перед конструкторами первого англо-французского сверхзвукового пассажирского самолета “Конкорд”. Было рассчитано, что от трения об атмосферу внешняя поверхность самолета будет разогреваться до 120-150° С, и в то же время требовалось, чтобы она не поддавалась эрозии в течение по меньшей мере 20000 часов. Решение проблемы было найдено с помощью поверхностного покрытия защиты самолета тончайшей пленкой фторопласта.