Расщепление по менделю. Законы Г

1. Допишите предложения.
1. Сущность гибридизации как метода генетического исследования заключается в скрещивании двух организмов.
2. Гибридизация, при которой исследуется наследование только одного признака, называется моногибридное скрещивание.

2. Как называется признак, проявляющийся у гибридов первого поколения при скрещивании чистых линий. Приведите примеры таких признаков из результатов опытов Менделя с горохом.
Доминантный признак. Например, при скрещивании гороха с желтыми и зелеными семенами у гибридов первого поколения семена также будут желтыми, то есть желтые семена – это доминантный признак.

3. Дайте определения гомозиготных и гетерозиготных организмов.
Гомозиготные организмы – организмы, имеющие две идентичные копии данного гена в гомологичных хромосомах.
Гетерозиготные организмы – организмы, имеющие две различные формы данного гена (разные аллели) в гомологичных хромосомах.

4. Приведите формулировку первого закона Менделя.
Первый закон Менделя (закон доминирования, или закон единообразия гибридов первого поколения) – при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, все первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.

5. Допишите схему, иллюстрирующую первый закон Менделя, используя буквенное обозначение признаков.

6. Раскройте сущность явления неполного доминирования.
Приведите примеры.
Неполное доминирование – гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот. Примеры: при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки.

7. Закончите предложение.
Расщеплением называется явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несет доминантный признак, а часть – рецессивный.

8. Приведите формулировку второго закона Менделя.
Второй закон Менделя (закон расщепления) - при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

9. Ответьте, при каком типе доминирования отмечается совпадение расщепления по фенотипу и генотипу у гибридов второго поколения при условии скрещивания чистых линий.
При условии неполного доминирования.

10. Дайте формулировку закона чистоты гамет.
Закон чистоты гамет: в каждую гамету попадает только одна аллель из пары аллелей данного гена родительской особи.

11. Дайте определение дигибридного скрещивания.
Дигибридное скрещивание – скрещивание организмов, различающихся по двум парам альтернативных признаков, например, окраске цветков (белая или окрашенная) и форме семян (гладкая или морщинистая).

12. Приведите формулировку третьего закона Менделя.
Третий закон Менделя (закон независимого наследования) - при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).

13. Напишите результаты скрещивания растений гороха, используя решетку Пеннета. Покажите наглядно, (например, с помощью цветных карандашей), что расщепление по фенотипу в потомстве составляет соотношение 9:3:3:1.
А – красные цветки
а – белые цветки
В – длинные стебли
в – короткие стебли
Р генотип: АаВв × АаВв
Фенотип: красный длинный × красный длинный

14. Используя результаты задания 13, покажите, что при дигибридном скрещивании каждая пара признаков имеет расщепление в потомстве в соотношении 3:1, как при моногибридном скрещивании, т.е. наследуется независимо от другой пары признаков. Заполните таблицу.

15. Закончите утверждение.
Третий закон Менделя можно справедливо называть законом независимого наследования.

16. Закончите предложения.
1. Генетический метод, используемый для ответа на вопрос, гомозиготен или гетерозиготен данный организм, имеющий доминантный фенотип, называется анализирующее скрещивание.
2. При этом исследуемый организм скрещивают с организмом, имеющим генотип, гомозиготный по рецессивной аллели, имеющий рецессивный фенотип.
3. Если исследуемый организм гомозиготен, то потомство от данного скрещивания будет единообразным и расщепления не произойдет.
4. Если исследуемый организм гетерозиготен, то произойдет расщепление 1:1 по фенотипу.

17. Объясните, почему при проведении генетических исследований Г. Мендель и другие ученые использовали большое число организмов и многократно повторяли свои опыты.
Мендель и другие ученые использовали точные количественные методы для анализа данных. На основе знания теории вероятностей необходимо было проведение анализа большого числа скрещиваний для устранения роли случайных отклонений.

План урока №18

1 Образовательная:

2 Развивающая:

Ход урока:

I Организационный момент

II Основная часть

1 Проверка домашнего задания

.

Что такое генотип, фенотип?

,?

2 Объяснение нового материала

Г) Что такое чистота гамет?

III Подведение итогов урока

IV Домашнее задание

1 Записи в тетради

Занятие №18

Тема:

МОНОГИБРИДНОЕ СКРЕЩИВАНИЕ

гибридизацией, гибридным, а отдельную особь - гибридом.

доминированием.

В потомстве, полученном от скрещивания гибридов первого поколения наблюдается явление расщепления: четверть особей из гибридов второго поколения несет рецессивный признак, три четверти – доминантный.

При скрещивании двух потомков первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1

(25% - гомозиготных доминантных, 50% - гетерозиготных, 25% - гомозиготных рецессивных)

Закон чистоты гамет

В чем причина расщепления? Почему в первом, втором и последующих поколениях возникают особи, дающие в результате скрещивания потомство с доминантным и рецессивным признаками?

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет».

Связь между поколениями при половом размножении осуществляется через половые клетки (гаметы). Очевидно, гаметы несут материальные наследственные факторы – гены, которые определяют развитие того или иного признака.

Обратимся к схеме, на которой символами записаны результаты:

Ген, отвечающий за доминантный желтый цвет семян, обозначим большой буквой, например А ; ген, отвечающий за рецессивный зеленый цвет, - малой буквой а . Обозначим соединение гамет, несущих гены А и а, знаком умножения: А х а =Аа. Как видно, возникающая в результате гетерозиготная форма (F1) имеет оба гена – Аа. Гипотеза чистоты гамет утверждает, что у гибридной (гетерозиготной) особи половые клетки чисты, т.е.имеют по одному гену из данной пары. Это означает, что у гибрида Аа будут в равном числе возникать гаметы с геном А и с геном а. Какие же между ними возможны сочетания? Очевидно, равновероятны четыре комбинации:

♂ ♀ А а
А АА Аа
а аА аа

В результате 4-х комбинаций получатся сочетания АА, 2Аа и аа. Первые три – дадут особей с доминантным признаком, четвертое – с рецессивным. Гипотеза чистоты гамет объясняет причину расщепления и наблюдаемые при этом численные соотношения. Вместе с тем ясны и причины различия в отношении дальнейшего расщепления особей с доминантными признаками в последующих поколениях гибридов. Особи с доминантными признаками по своей наследственной природе неоднородны. Одна из трех (АА) будет давать гаметы только одного сорта (А) а при самоопылении или скрещивании с себе подобными не будет расщепляться. Две другие (Аа) дадут гаметы 2-х сортов, в их потомстве будет происходить расщепление в тех же численных соотношениях, что и у гибридов второго поколения.Гипотеза чистоты гамет устанавливает, что закон расщепления есть результат случайного сочетания гамет, несущих разные гены (Аа). Соединится ли гамета, несущая А ген, с другой гаметой, несущей А или а ген, при условии равной жизнеспособности гамет и равного их количества, одинаково вероятно.

При случайном характере соединения гамет общий результат оказывается статистически закономерным.

Таким образом, было установлено, что расщепление признаков в потомстве гибридных растений – результат наличия у них двух генов – А и а, ответственных за развитие одного признака, например окраски семян.

Мендель предложил, что наследственные факторы при образовании гибридов не смешиваются, а сохраняются в неизменном виде. В теле гибрида F1 от скрещивания родителей, различающих по альтернативным признакам, присутствуют оба фактора - доминантный ген и рецессивный, но рецессивный ген подавляется. Связь между поколениями при половом размножении осуществляется через половые клетки - гаметы. Следовательно, необходимо допустить, что каждая гамета несёт только один фактор из пары. Тогда при оплодотворении - слияний двух гамет, каждая из которых несёт рецессивный ген, приводит к образованию организма с рецессивным признаком, проявляющимся фенотипически. Слияние же гамет, несущих по доминантному гену, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный ген, будет приводить к развитию организма с доминантным признаком.

Таким образом, появление во втором поколении (F 2) рецессивного признака одного из родителей (Р) может иметь место только при соблюдении двух условий: 1) если у гибридов наследственные факторы сохраняются в неизменном виде, 2) если половые клетки содержат только один наследственный фактор из аллельной пары. Расщепление признаков впотомстве при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы генетически чисты, т.е. несут только один ген из аллельной пары.

Закон частоты гамет можно сформулировать следующим образом:при образовании половых клеток в каждую гамету попадает только один ген из аллельной пары.

Почему и как это происходит? Известно, что в каждой клетке организма имеется совершенно одинаковый диплоидный набор хромосом. Две гомологичные хромосомы содержат два одинаковых аллельных гена. Образуются два сорта гамет по данной аллельной паре. При оплодотворении гаметы, несущие одинаковые или разные аллели, случайно встречаются друг с другом. В силу статистической вероятности при достаточно большом количестве гамет в потомстве 25% генотипов будут гомозиготными доминантными, 50% - гетерозиготными, 25% - гомозиготными рецессивными, т.е. устанавливается отношение: 1АА:2Аа:1аа. Соответственно по фенотипу потомство второго поколения при моногибридном скрещивании распределяется в отношение 3 / 4 особей с доминантным признаком, / 4 особей с рецессивным признаком (3:1).

Таким образом, цитологической основой расщепления признаков у потомства при моногибридном скрещивании является расхождение гомологичных хромосом и образование гаплоидных половых клеток в мейозе.

Анализирующее скрещивание

Разработанный Менделем гибридологический метод изучения наследственности позволяет установить, гомозиготен или гетерозиготен организм, имеющий доминантный фенотип по исследуемому гену (или исследуемым генам). Для этого скрещивают особь с неизвестным генотипом и организм, гомозиготный по рецессивной аллеи (аллеям), имеющий рецессивный фенотип.

Если доминантная особь гомозиготна, то потомство от такого скрещивания будет единообразным и расщепления не произойдет (ААхаа = Аа). Если доминантная особь гетерозиготна, то расщепление произойдет в отношении 1:1 по фенотипу (Аа х аа = Аа, аа). Такой результат скрещивания -прямое доказательство образования у одного из родителей двух сортов гамет, т.е. его гетерозиготности.

При дигибридном скрещивании расщепление по каждому признаку идет независимо от другого признака. Дигибридное скрещивание есть два независимо идущих моногибридных скрещивания, результаты которых как бы накладываются друг на друга

При скрещивании двух гомозиготных особей, отличающихся др. от др. по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

На законах Менделя основан анализ расщепления и в более сложных случаях – при различиях особей по трем, четырем и более парам признаков.

План урока №18

ТЕМА: Моногибридное и дигибридное скрещивание. Законы Менделя

1 Образовательная:

Сформировать знания о моногибридном скрещивании, первом законе Менделя

Показать роль исследований Менделя в понимании сущности наследования признаков

Раскрыть формулировку закона расщепления, второго закона Менделя

Раскрыть сущность гипотезы чистоты гамет

Сформировать знания о дигибридном скрещивании как методе изучения наследственности

Раскрыть на примере ди- и полигибридного скрещивания проявление третьего закона Менделя

2 Развивающая:

Развивать память, расширять кругозор

Способствовать развитию навыка использования генетической символики при решении генетических задач

Ход урока:

I Организационный момент

1 Ознакомление студентов с темой и целью урока

2 Перед студентами ставится ряд заданий, которые необходимо выполнить в процессе урока:

Знать формулировки законов Менделя

Усвоить закономерности наследования признаков, установленные Менделем

Усвоить сущность гипотезы чистоты гамет

Усвоить сущность дигибридного скрещивания

II Основная часть

1 Проверка домашнего задания

Что изучает генетика? Какие задачи решает генетика?

Дайте определение наследственности и изменчивости.

Назовите этапы эмбрионального периода?

Объясните термины: ген, доминантные и рецессивные гены. - Какое развитие называют прямым?

Какие гены называют аллельными? Что такое множественный аллелизм?

Что такое генотип, фенотип?

В чем особенность гибридологического метода?

Что означает генетическая символика: Р,F1,F2,,?

2 Объяснение нового материала

Моногибридное скрещивание; первый закон Менделя

Второй закон Менделя; закон частоты гамет

Сущность дигибридного скрещивания; третий закон Менделя

3 Закрепление нового материала

А) Сформулируйте 1 закон Менделя.

Б) Какое скрещивание называют моногибридным?

В) Сформулируйте второй закон Менделя

Г) Что такое чистота гамет?

Д) Какие правила и закономерности проявляются при дигибридном скрещивании?

Е) Как формулируется третий закон Менделя?

III Подведение итогов урока

IV Домашнее задание

1 Записи в тетради

2 Учебник В.Б.Захарова, С.Т.Мамонтова «Биология» (стр.266-277)

3 Учебник Ю.И.Полянского «Общая биология» (стр. 210-217)

Занятие №18

Тема:«Моногибридное и дигибридное скрещивание. Законы Менделя».

1. Моногибридное скрещивание. Правило единообразия гибридов первого поколения – первый закон наследственности, установленный Г.Менделем.

2. Второй закон Менделя - закон расщепления. Гипотеза чистоты гамет

3. Дигибридное и полигибридное скрещивание. Третий закон Менделя – закон независимого комбинирования признаков.

МОНОГИБРИДНОЕ СКРЕЩИВАНИЕ

Для иллюстрации первого закона Менделя вспомним его опыты по моногибридному скрещиванию растений гороха. Скрещивание двух орга­низмов называется гибридизацией, потомство от скре­щивания двух особей с разной наследственностью назы­вают гибридным, а отдельную особь - гибридом.

Моно­гибридным называется скрещивание двух организмов, отличающихся друг от друга по одной паре альтерна­тивных (взаимоисключающих) признаков.

Например, при скрещивании гороха с желтыми (доминирующий признак) и зелены­ми семенами (рецессивный признак), все гибриды будут иметь желтые семена. Такая же картина наблюдается при скрещивании растений, обладающих гладкой и морщинистой формой семян; все потомство первого поколения будет иметь гладкую форму семян. Следовательно, у гибрида, первого поко­ления из каждой пары альтернативных признаков проявляется только один. Второй признак как бы исчезает, не проявляется. Преобладание у гибрида признака одного из родителей Мендель назвал доминированием. По фенотипу все гибриды имеют желтые семена, а по генотипу они гетерозиготные (Аа). Т.о., все поколение единообразно.

Первый закон Менделя - закон доминирования.

Закон единообразия первого поколения гибридов, или первый закон Менделя - называют также законом доминирования, так как все особи первого поколения имеют одинаковое проявление признака. Сформулировать его можно следующим образом: при скрещивании двух организмов, относящихся к разным чистым линиям (двух гомозиготных организмов), отличающихся др. от др. по одной паре альтернативных признаков, все первое поколение гибридов(F 1) окажется единообразным и будет нести признак одного из родителей.

Такая закономерность будет наблюдаться во всех случаях при скрещивании двух организмов, принадлежащих двум чистым линиям, когда имеет место явления полного доминирования признака (т.е. один признак полностью подавляет развитие другого).

Генетика — наука о наследственности и изменчивости живыхорганизмов . Как наука генетика существует с 1900 г., когда несколькими учеными (X.Де Фриз, К. Корренс, Э. Чермак) независимо друг от друга были переоткрыты закономерности наследования родительских признаков, которые экспериментально установил еще в 1865 г. чешский естествоиспытатель Г.Мендель. На основе проведенного статистического анализа результатов скрещиваний гороха с разными признаками он сформулировал несколькоправил, которые впоследствии получили название законов Менделя. Тогда же вспомнили о работах В. Ру, О. Гертвига, Э. Страсбургера, А. Вейсмана, в которых была сформулирована «ядерная гипотеза» наследования признаков, ставшая в будущем основой хромосомной теории наследственности (Т. Морган и др.). Названиенауки «генетика» предложил в 1906 г. английский биолог У. Бэтсон.

Селекция — наука о методах создания сортов, гибридов растений и пород животных, штаммов микроорганизмов с нужнымичеловеку признаками.

Породой и сортом называют популяцию растений или животных, созданную человеком для удовлетворениясвоих потребностей; они характеризуются специфическим генофондом, наследственно закрепленными признаками. У микроорганизмов чистую культуру называют штаммом. Иногда они бываютчистыми линиями — генотипически однородным потомством,полученным за счет самооплодотворения.

Теоретической основойселекции является генетика.

Методы селекционной работы — отбор, гибридизация, полиплоидия, мутагенез.

Г.Мендель

Иоганн Грегор Мендель (1822 —1884) — аббат монастыря в Брно Чехия) по праву считается основателем генетики. В результатеопытов над горохом он сформулировал законы наследственности, разработал концепцию доминантных и рецессивных генов.

Г. Мендель является основоположником гибридологического анализа, изложенного им в фундаментальном труде «Опыты над растительными гибридами» (1866).

В опытах над горохом Г. Мендель использовал гибридологический метод, суть которого заключается в получении гибридов (потомков от скрещивания организмов) и их сравнительном анализе в ряду поколений. Для эксперимента ученый использовалчистые линии (термин введен позже, в 1903 г.) такихрастений гороха, в потомстве которых при самоопылении не было различий по анализируемому признаку. Другими словами, получалось генотипически однородное потомство. Г. Мендель, как правило, использовал контрастирующие признаки: гладкая поверхность семян и морщинистые горошины, растения высокие и низкие, белая и розовая окраска венчика и т.п.

Первый закон Менделя — закон единообразия гибридов первого поколения.

Своиопыты Г. Мендель начал с того, что скрещивал сорта гороха, которые различались лишь по одной паре альтернативных (наиболееконтрастирующих) признаков. Такое скрещивание называется моногибридным. Для первого эксперимента естествоиспытатель выбралсорта гороха, различающиеся по цвету семян: желтые и зеленые.

Поскольку горох является самоопыляющимся растением, то у растений одного сорта все семена были зелеными, у другого — только желтые. В первой серии опытов все остальные признаки растения во внимание не принимались и при анализе не учитывались.

Г. Мендель провел искусственное перекрестное опыление и скрестил сорта, различающиеся по цвету семян. Была выявлена интересная закономерность: к какому бы сорту не принадлежало материнское растение (с желтыми или с зелеными семенами), семенагибридного растения оказывались только желтыми. Во второй серии опытов ученый использовал сорта гороха, различающиеся потекстуре поверхности семян: гладкие и морщинистые. И здесь получилась сходная картина: при любых вариантах скрещивания угибридных растений семена были только гладкими.

Мендель сделал вывод, что у гибридов первого поколения проявляются признаки только одного из родителей. Такие признакибыли названы доминантными, а непроявляющиеся признаки — рецессивными. Обнаруженная закономерность была сформулирована какединообразие гибридов первого поколения. В опытах Менделя в результате скрещивания различных сортов гороха было обнаружено полное доминирование, когда гибридные растения имели фенотип (совокупность внешних признаков) только одного из родителей.

Доминантные аллели принято обозначать прописными буквами:

например, А (желтые семена), В (гладкие семена).

Рецессивные аллели обозначаютстрочными буквами: например, а (зеленые семена), b (морщинистые семена). Следовательно, схематически любая гомозиготная особь обозначается как АА, аа,ВB bb и т.п.

Гетерозиготные особи — Аа, ВЬ и т.п.

Гибриды различных поколений принято обозначать F 1 (первое поколение),

F 2 (второе поколение) и т.д.

Родителей обозначают Р, материнскую особь — (зеркало Венеры), отцовскую особь — (щит и копье Марса). Знак скрещивания форм — х.

Более поздние исследования показали, что иногда наблюдается неполное доминирование, когда гибриды обладают промежуточным фенотипом. Так, при скрещивании растений ночной красавицы с красными цветками с растениями, имеющимибелые цветки, все гибриды первого поколения имеют розовыецветки.

Элементарными единицами наследственности являются гены .Существование каких-то дискретных наследственных факторов вполовых клетках было предположительно высказано Г. Менделемеще в 1865 г. В 1909 г. датский биолог Вильгельм Иогансен назвалдискретные наследственные факторы генами. Теперь стало известно, что ген представляет собой участок молекулы ДНК.

Совокупность генов организма называют генотипом.

Генотип и внешняясреда определяют и формируют фенотип организма — совокупность морфологических, физиологических, поведенческих и др. признаков и свойств организма.

Совокупность всех генов гаплоидногохромосом называют геномом.

Гены, определяющие развитие альтернативных признаков ирасположенные в идентичных участках гомологичных хромосом,т.е. парные гены, называют аллелями, или аллельными генами. Придиплоидном наборе хромосом в любой клетке животного или рас-тения всегда имеется по два аллеля любого гена. В половых клетках (гаметах) в результате мейоза содержится только гаплоидный набор хромосом (п) и только по одному аллелю.

При слиянии двух родительских гамет образуется клетка с диплоидным набором хромосом (2 n ) — зигота. Если у образовавшейся зиготы гомологичные хромосомы несут идентичные аллели, то это гомозигота. Этот термин был введен генетиком У. Бэтсоном в 1902 г.

Под гомозиготностью понимают наследственно однородные организмы, в потомстве которых не происходит расщепления признаков.

Горох, как самоопыляемое растение, гомозиготен.

В отличие от гомозиготы, у гетерозиготы в гомологичныххромосомах локализованы разные аллели каждого гена, отвечающие за альтернативные признаки: например, горох с гладкими иморщинистыми семенами. Потомства гетерозиготных особей проявляют разные признаки. Как правило, гетерозиготные особи наиболее жизнеспособны.


Второй закон Менделя — расщепление признаков у гибридов второго поколения.

Из гибридных семян гороха были выращены растения, которые затем были размножены естественным для гороха способом — путем самоопыления и таким образом получены семена второго поколения, не только желтые, но и зеленые. Соотношение желтых и зеленых семян в собранном урожае составило 6022: 2001 соответственно, т.е. 3:1. Следовательно, при скрещивании гибридов первого поколения между собой во втором поколении произошло расщепление признаков по фенотипу 3:1. Аналогичные результаты были получены по паре признаков «гладкие и морщинистые семена», «пурпурная и белая окраска венчика». Данные экспериментов свидетельствовали о том, что у гибридов второго поколения проявляется рецессивный признак, скрытый в первом поколении.

Схему образования зигот второго поколения можно представить следующим образом. Из полученной последовательности зигот F2(АА, Аа, Аа, аа, или АА, 2Аа, аа) видно, чтосоотношение 3:1 по фенотипу объясняется тем, что в гомозиготеАА представлен только доминантный аллель А, отвечающий зажелтый цвет семян, в гетерозиготах Аа доминирует аллель А иподавляет проявление рецессивного (а) фенотипа, т.е. зеленогоцвета семян. Только в зиготе аа в фенотипе проявляется рецессивный признак — зеленый цвет семян. И совершенно очевидно,что соотношение по генотипу соответствует соотношению 1:2:1(АА:2Аа:аа).

Второй закон Менделя, или закон расщепления, формулируется следующим образом: при скрещивании гибридов первого поколения между собой во втором поколении наблюдается расщепление всоотношении 3:1 по фенотипу и 1:2:1 по генотипу.

У растения ночная красавица при скрещивании гибридов первогопоколения (F)) получены гибриды второго поколения (F2), дающие расщепление и по фенотипу, и по генотипу 1:2:1.Следовательно, при неполном доминировании в потомстве F2расщепление по фенотипу и генотипу совпадает (1:2:1).

Правило, или принцип, чистоты гамет. Для того чтобы объяснить явление расщепления у гибридов второго поколения, Г. Мендель предложил гипотезу чистоты гамет. Через гаметы при половом размножении организмов осуществляется связь между поколениями. Через гаметы передаются материальные наследственные факторы — гены, определяющие и контролирующие тотили иной признак или свойство организма. Гаметы генетическичисты, т.е. несут только один ген из аллельной пары (например,А или а). В зиготе, образующейся при слиянии гамет, присутствует пара аллелей того или иного гена. Так, гетерозиготная формаАа содержит доминантный (А) и рецессивный (а) аллели. Гаметы, участвующие в образовании гетерозиготы Аа, содержат только по одному аллелю: А и а. Слияние гамет и образование гетерозиготы можно записать как: А х а =Аа. В зиготе аллели не смешиваются и ведут себя как независимые единицы. Согласно гипотезе чистоты гамет, у гетерозиготной особи Аа будут с одинаковойвероятностью формироваться гаметы с геном А и гаметы с генома, а гомозиготные особи АА или аа будут давать гаметы А и а,соответственно.

Таким образом, гетерозиготные организмы дают различающиеся по аллелям гаметы и поэтому в их потомстве наблюдается расщепление. Гомозиготные особи образуют один вид гамет и поэтому при самоопылении не дают расщепления.

В настоящее время благодаря исследованиям митоза, мейозагипотеза чистоты гамет, предложенная Г. Менделем, получила неоспоримое цитологическое подтверждение.


Дигибридное скрещивание. Третий закон Менделя .

С помощьюмоногибридного скрещивания Г. Мендель установил закономерности наследования одного отдельно взятого признака. В природных условиях могут скрещиваться особи, различающиеся по двуми более признакам. Для таких более сложных случаев существуютсвои закономерности наследования признаков.Вслед за опытами по моногибридному скрещиванию Мендельстал исследовать наследование признаков, за которые отвечаютуже две пары аллелей. В частности, ученый наблюдал наследованиене только окраски семян гороха (желтые — А, зеленые — а), но иодновременно с этим характер их поверхности (гладкая — В, морщинистая — Ь). Скрещивание особей, отличающихся по двум парам аллелей, называется дигибридным скрещиванием.

Одна пара аллелей (Аа) контролирует окраску семян, другая пара (ВЬ) — характер их поверхности.В рассматриваемой серии опытов Г. Мендель скрещивал растения гороха, с одной стороны, с желтыми (А), гладкими (В) семенами, с другой стороны — с зелеными (а) и морщинистыми семенами (Ь). В первом поколении все гибриды, как и ожидалось,имели желтые гладкие семена. Во втором поколении произошлонезависимое расщепление признаков — согласно гипотезе чистоты гамет, аллельные гены ведут себя как независимые, цельныеединицы. Было получено: 315 желтых гладких семян (генотипы:ААВВ,АаВЬ, АаВВ, ААВЬ), 108 — зеленых гладких (ааВВ, ааВЬ), 101 —желтых морщинистых (AAbb, Aabb), 32 — зеленых морщинистых(aabb). В целом расщепление по фенотипу дало 4 группы особей: сжелтыми гладкими семенами — 9, с желтыми морщинистымисеменами — 3, с зелеными гладкими семенами — 3, с зеленымиморщинистыми семенами — 1. Более кратко это можно записатькак 9 AB :3 Ab :3 aB : lab .

Доминирование по рассматриваемым признакам определяется доминантными аллелями А и В, наличие которых и обусловливает соответствующий фенотип. По этой причине различныегенотипы могут дать один и тот же фенотип. Например, растения с желтыми гладкими семенами (один фенотип) образованы четырьмя различными генотипами (гомозигота ААВВ, гетерозигота по обоим парам аллелей АаВЬ, гетерозигота по признакуокраски семян АаВВ, гетерозигота по признаку поверхности семянААВЬ). Растения с зелеными морщинистыми семенами могут бытьполучены лишь при соединении рецессивных аллелей в гомозиготе (aabb), т.е. такие растения всегда гомозиготны. Полученныепри дигибридном скрещивании количественные соотношениямежду числом фенотипов и генотипов во втором поколении справедливы для аллелей с полным доминированием. При промежуточном характере наследования число фенотипов будет значительно больше. При неполном доминировании по обоим рассматриваемым признакам число фенотипов и генотипов равно междусобой.

Результаты проведенных экспериментов показаны в таблице, известной под названием решетки Пеннета, названной так по имени английского генетика Реджиналда Пеннета(1875— 1967). С помощью решетки Пеннета легко установить всевозможные сочетания мужских и женских гамет. Гаметы родителейуказываются по верхнему и левому краям решетки, а в ячейкирешетки вписываются генотипы зигот, образовавшихся при слиянии гамет. Установлено, что при дигибридном скрещивании, также как и при моногибридном скрещивании, каждая пара аллелейведет себя независимо от другой пары.

Третий закон Менделя, или закон независимого комбинирования (наследования) признаков, формулируется следующимобразом: расщепление по каждой паре генов идет независимо отдругой пары генов. Из этого следует, что каждая пара альтернативных признаков ведет себя в ряду поколений независимо друг отдруга. Среди потомков второго поколения появляются особи сновыми (по отношению к родительским) комбинациями признаков.

Статистический характер законов Г.Менделя.

В опытах с горохом при моногибридном скрещивании Г.Мендель получил соотношение по изучаемому признаку 3,0095:1,0, т.е. близкое к теоретически ожидаемому 3:1. Ученый оперировал сравнительно крупными числами (им было проанализировано более 8 тыс. семян),поэтому его результат был близок к расчетному. Более или менееточное выполнение соотношения 9:3:3:1 при дигибридном скрещивании также возможно лишь при анализе большого фактического материала. В частности, Г. Менделем было получено соотношение 9,84:3,38:3,16:1,0. Результаты такого анализа не свидетельствуют о невыполнении законов Менделя. Законы генетикиносят статистический характер. Из этого следует, что чем большматериала по расщеплению признаков будет рассмотрено и проанализировано, тем точнее будут выполняться данные статистические закономерности.

При локализации генов в половых хромосомах или в ДНК пластид, митохондрий и других органоидов, результаты скрещиваниймогут не следовать законам Менделя.

Генетика — наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году.

Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип — совокупность генов организма.

Локус — местоположение гена в хромосоме.

Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

Гомозигота — организм, имеющий аллельные гены одной молекулярной формы.

Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Методы генетики

Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным , двух пар — дигибридным , нескольких пар — полигибридным . Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак — цвет горошин, альтернативные признаки — желтый цвет, зеленый цвет горошин.

Кроме гибридологического метода, в генетике используют: генеалогический — составление и анализ родословных; цитогенетический — изучение хромосом; близнецовый — изучение близнецов; популяционно-статистический метод — изучение генетической структуры популяций.

Генетическая символика

Предложена Г. Менделем, используется для записи результатов скрещиваний: Р — родители; F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F 1 — гибриды первого поколения — прямые потомки родителей, F 2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F 1); × — значок скрещивания; G — мужская особь; E — женская особь; A — доминантный ген, а — рецессивный ген; АА — гомозигота по доминанте, аа — гомозигота по рецессиву, Аа — гетерозигота.

Закон единообразия гибридов первого поколения, или первый закон Менделя

Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха. Особенности гороха: 1) относительно просто выращивается и имеет короткий период развития; 2) имеет многочисленное потомство; 3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика — белая или красная; окраска семядолей — зеленая или желтая; форма семени — морщинистая или гладкая; окраска боба — желтая или зеленая; форма боба — округлая или с перетяжками; расположение цветков или плодов — по всей длине стебля или у его верхушки; высота стебля — длинный или короткий); 4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Опыты по скрещиванию разных сортов гороха Мендель проводил в течение восьми лет, начиная с 1854 года. 8 февраля 1865 года Г. Мендель выступил на заседании Брюннского общества естествоиспытателей с докладом «Опыты над растительными гибридами», где были обобщены результаты его работы.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные — красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным.

При моногибридном скрещивании гомозиготных особей , имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

Генетическая схема закона единообразия Менделя

(А — желтый цвет горошин, а — зеленый цвет горошин)

Закон расщепления, или второй закон Менделя

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.

Признаки Доминантные Рецессивные Всего
Число % Число %
Форма семян 5474 74,74 1850 25,26 7324
Окраска семядолей 6022 75,06 2001 24,94 8023
Окраска семенной кожуры 705 75,90 224 24,10 929
Форма боба 882 74,68 299 25,32 1181
Окраска боба 428 73,79 152 26,21 580
Расположение цветков 651 75,87 207 24,13 858
Высота стебля 787 73,96 277 26,04 1064
Всего: 14949 74,90 5010 25,10 19959

Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;
  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением . Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

При моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Генетическая схема закона расщепления Менделя

(А — желтый цвет горошин, а — зеленый цвет горошин):

Закон чистоты гамет

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Мендель предположил, что:

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;
  2. организмы содержат два фактора, определяющих развитие признака;
  3. при образовании гамет в каждую из них попадает только один из пары факторов;
  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Для доказательства своих предположений Г. Мендель использовал скрещивание, которое сейчас называют анализирующим (анализирующее скрещивание — скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву). Наверное, Мендель рассуждал следующим образом: «Если мои предположения верны, то в результате скрещивания F 1 с сортом, обладающим рецессивным признаком (зелеными горошинами), среди гибридов будут половина горошин зеленого цвета и половина горошин — желтого». Как видно из приведенной ниже генетической схемы, он действительно получил расщепление 1:1 и убедился в правильности своих предположений и выводов, но современниками он понят не был. Его доклад «Опыты над растительными гибридами», сделанный на заседании Брюннского общества естествоиспытателей, был встречен полным молчанием.

Цитологические основы первого и второго законов Менделя

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А , а зеленую — а . Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа ). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А , а другого — с геном а .

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа ; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А , другая половина — ген а . Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а ), 1/4 — гомозиготы по доминантному признаку (несут два гена А ) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а ). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска (А ) и гладкая форма (В ) семян — доминантные признаки, зеленая окраска (а ) и морщинистая форма (b ) — рецессивные признаки.

Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F 1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).

Анализируя полученное потомство, Мендель обратил внимание на то, что: 1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена); 2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 — зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).

При дигибридном скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 4:2:2:2:2:1:1:1:1, признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Р ♀АABB
желтые, гладкие
× ♂aаbb
зеленые, морщинистые
Типы гамет AB ab
F 1 AaBb
желтые, гладкие, 100%
P ♀АaBb
желтые, гладкие
× ♂AаBb
желтые, гладкие
Типы гамет AB Ab aB ab AB Ab aB ab

Генетическая схема закона независимого комбинирования признаков:

Гаметы: AB Ab aB ab
AB AABB
желтые
гладкие
AABb
желтые
гладкие
AaBB
желтые
гладкие
AaBb
желтые
гладкие
Ab AABb
желтые
гладкие
AАbb
желтые
морщинистые
AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aB AaBB
желтые
гладкие
AaBb
желтые
гладкие
aaBB
зеленые
гладкие
aaBb
зеленые
гладкие
ab AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aaBb
зеленые
гладкие
aabb
зеленые
морщинистые

Анализ результатов скрещивания по фенотипу: желтые, гладкие — 9/16, желтые, морщинистые — 3/16, зеленые, гладкие — 3/16, зеленые, морщинистые — 1/16. Расщепление по фенотипу 9:3:3:1.

Анализ результатов скрещивания по генотипу: AaBb — 4/16, AABb — 2/16, AaBB — 2/16, Aabb — 2/16, aaBb — 2/16, ААBB — 1/16, Aabb — 1/16, aaBB — 1/16, aabb — 1/16. Расщепление по генотипу 4:2:2:2:2:1:1:1:1.

Если при моногибридном скрещивании родительские организмы отличаются по одной паре признаков (желтые и зеленые семена) и дают во втором поколении два фенотипа (2 1) в соотношении (3 + 1) 1 , то при дигибридном они отличаются по двум парам признаков и дают во втором поколении четыре фенотипа (2 2) в соотношении (3 + 1) 2 . Легко посчитать, сколько фенотипов и в каком соотношении будет образовываться во втором поколении при тригибридном скрещивании: восемь фенотипов (2 3) в соотношении (3 + 1) 3 .

Если расщепление по генотипу в F 2 при моногибридном поколении было 1:2:1, то есть было три разных генотипа (3 1), то при дигибридном образуется 9 разных генотипов — 3 2 , при тригибридном скрещивании образуется 3 3 — 27 разных генотипов.

Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

Цитологические основы третьего закона Менделя

Пусть А — ген, обусловливающий развитие желтой окраски семян, а — зеленой окраски, В — гладкая форма семени, b — морщинистая. Скрещиваются гибриды первого поколения, имеющие генотип АаВb . При образовании гамет из каждой пары аллельных генов в гамету попадает только один, при этом в результате случайного расхождения хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b , а ген а — с геном В или с геном b . Таким образом, каждый организм образует четыре сорта гамет в одинаковом количестве (по 25%): АВ , Ab , aB , ab . Во время оплодотворения каждый из четырех типов сперматозоидов может оплодотворить любую из четырех типов яйцеклеток. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.

    Перейти к лекции №16 «Онтогенез многоклеточных животных, размножающихся половым способом»

    Перейти к лекции №18 «Сцепленное наследование»

Данный закон утверждает, что скрещивание особей, различающихся по данному признаку (гомозиготных по разным аллелям), дает генетически однородное потомство (поколение F 1), все особи которого гетерозиготны. Все гибриды F 1 могут иметь при этом либо фенотип одного из родителей (полное доминирование), как в опытах Менделя, либо, как было обнаружено позднее, промежуточный фенотип (неполное доминирование). В дальнейшем выяснилось, что гибриды первого поколения F 1, могут проявить признаки обоих родителей (кодоминирование). Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и aа) все их потомки одинаковы по генотипу (гетерозиготны – Аа), а значит, и по фенотипу.

2.3.Закон расщепления (второй закон Менделя)

Этот закон называют законом (независимого) расщепления. Суть его состоит в следующем. Когда у организма, гетерозиготного по исследуемому признаку, формируются половые клетки – гаметы, то одна их половина несет один аллель данного гена, а вторая – другой. Поэтому при скрещивании таких гибридов F 1 между собой среди гибридов второго поколения F2 в определенных соотношениях появляются особи с фенотипами как исходных родительских форм, так и F 1.

В основе этого закона лежит закономерное поведение пары гомологичных хромосом (с аллелями А и а), которое обеспечивает образование у гибридов F 1 гамет двух типов, в результате чего среди гибридов F2 выявляются особи трех возможных генотипов в соотношении 1АА: 2 Аа: 1аа. Иными словами, «внуки» исходных форм – двух гомозигот, фенотипически отличных друг от друга, дают расщепление по фенотипу в соответствии со вторым законом Менделя.

Однако это соотношение может меняться в зависимости от типа наследования. Так, в случае полного доминирования выделяются 75% особей с доминантным и 25% с рецессивным признаком, т.е. два фенотипа в отношении 3:1. При неполном доминировании и кодоминировании 50% гибридов второго поколения (F2) имеют фенотип гибридов первого поколения и по 25% – фенотипы исходных родительских форм, т.е. наблюдается расщепление 1:2:1 .

2.4.Закон независимого комбинирования (наследования) признаков (третий закон Менделя)

Этот закон говорит о том, что каждая пара альтернативных признаков ведет себя в ряду поколений независимо друг от друга, в результате чего среди потомков первого поколения (т.е. в поколении F2) в определенном соотношении появляются особи с новыми (по сравнению с родительскими) комбинациями признаков. Например, в случае полного доминирования при скрещивании исходных форм, различающихся по двум признакам, в следующем поколении (F2) выявляются особи с четырьмя фенотипами в соотношении 9:3:3:1. При этом два фенотипа имеют «родительские» сочетания признаков, а оставшиеся два – новые. Данный закон основан на независимом поведении (расщеплении) нескольких пар гомологичных хромосом. Так, при дигибридном скрещивании это приводит к образованию у гибридов первого поколения (F 1) 4 типов гамет (АВ, Ав, аВ, ав), а после образования зигот – к закономерному расщеплению по генотипу и, соответственно, по фенотипу в следующем поколении (F2).

Парадоксально, но в современной науке огромное внимание уделяется не столько самому третьему закону Менделя в его исходной формулировке, сколько исключениям из него. Закон независимого комбинирования не соблюдается в том случае, если гены, контролирующие изучаемые признаки, сцеплены, т.е. располагаются по соседству друг с другом на одной и той же хромосоме и передаются по наследству как связанная пара элементов, а не как отдельные элементы. Научная интуиция Менделя подсказала ему, какие признаки должны быть выбраны для его дигибридных экспериментов, – он выбрал несцепленные признаки. Если бы он случайно выбрал признаки, контролируемые сцепленными генами, то его результаты были бы иными, поскольку сцепленные признаки наследуются не независимо друг от друга.

С чем же связана важность исключений из закона Менделя о независимом комбинировании? Дело в том, что именно эти исключения позволяют определять хромосомные координаты генов (так называемый локус).

В случаях когда наследуемость определенной пары генов не подчиняется третьему закону Менделя, вероятнее всего эти гены наследуются вместе и, следовательно, располагаются на хромосоме в непосредственной близости друг от друга. Зависимое наследование генов называется сцеплением, а статистический метод, используемый для анализа такого наследования, называется методом сцепления. Однако при определенных условиях закономерности наследования сцепленных генов нарушаются. Основная причина этих нарушений – явление кроссинговера, приводящего к перекомбинации (рекомбинации) генов. Биологическая основа рекомбинации заключается в том, что в процессе образования гамет гомологичные хромосомы, прежде чем разъединиться, обмениваются своими участками.

Кроссинговер – процесс вероятностный, а вероятность того, произойдет или не произойдет разрыв хромосомы на данном конкретном участке, определяется рядом факторов, в частности физическим расстоянием между двумя локусами одной и той же хромосомы. Кроссинговер может произойти и между соседними локусами, однако его вероятность значительно меньше вероятности разрыва (приводящего к обмену участками) между локусами с большим расстоянием между ними.

Данная закономерность используется при составлении генетических карт хромосом (картировании). Расстояние между двумя локусами оценивается путем подсчета количества рекомбинаций на 100 гамет. Это расстояние считается единицей измерения длины гена и называется сентиморганом в честь генетика Т. Моргана, впервые описавшего группы сцепленных генов у плодовой мушки дрозофилы – любимого объекта генетиков. Если два локуса находятся на значительном расстоянии друг от друга, то разрыв между ними будет происходить так же часто, как при расположении этих локусов на разных хромосомах.

Используя закономерности реорганизации генетического материала в процессе рекомбинации, ученые разработали статистический метод анализа, называемый анализом сцепления.

Законы Менделя в их классической форме действуют при наличии определенных условий. К ним относятся:

1) гомозиготность исходных скрещиваемых форм;

2) образование гамет гибридов всех возможных типов в равных соотношениях (обеспечивается правильным течением мейоза; одинаковой жизнеспособностью гамет всех типов; равной вероятностью встречи любых гамет при оплодотворении);

3) одинаковая жизнеспособность зигот всех типов.

Нарушение этих условий может приводить либо к отсутствию расщепления во втором поколении, либо к расщеплению в первом поколении; либо к искажению соотношения различных генотипов и фенотипов. Законы Менделя имеют универсальный характер для всех диплоидных организмов, размножающихся половым способом. В целом они справедливы для аутосомных генов с полной пенетрантностью (т.е. 100-процентной частотой проявления анализируемого признака; 100% пенетрантность подразумевает, что признак выражен у всех носителей аллеля, детерминирующего развитие этого признака) и постоянной экспрессивностью (т.е. постоянной степенью выраженности признака); постоянная экспрессивность подразумевает, что фенотипическая выраженность признака одинакова или примерно одинакова у всех носителей аллеля, детерминирующего развитие этого признака.

Знание и применение законов Менделя имеет огромное значение в медико-генетическом консультировании и определении генотипа фенотипически «здоровых» людей, родственники которых страдали наследственными заболеваниями, а также в выяснении степени риска развития этих заболеваний у родственников больных.