Системы координат. Декартова система координат: основные понятия и примеры Как узнать какая система координат используется

Глава I. Векторы на плоскости и в пространстве

§ 13. Переход от одной прямоугольной декартовой системы координат к другой

Данную тему мы предлагаем Вам рассмотреть в двух вариантах.

1) По учебнику И.И.Привалов "Аналитическая геометрия" (учебник для высших технических учебных заведений 1966 г.)

И.И.Привалов "Аналитическая геометрия"

§ 1. Задача преобразования координат.

Положение точки на плоскости определяется двумя координатами относительно некоторой системы координат. Координаты точки изменятся, если мы выберем другую систему координат.

Задача преобразования координат состоит в том, чтобы, зная координаты точки в одной системе координат, найти ее координаты в другой системе .

Эта задача будет разрешена, если мы установим формулы, связывающие координаты произвольной точки по двум системам, причем в коэффициенты этих формул войдут постоянные величины, определяющие взаимное положение систем.

Пусть даны две декартовы системы координат хОу и XO 1 Y (рис. 68).

Положение новой системы XO 1 Y относительно старой системы хОу будет определено, если известны координаты а и b нового начала O 1 по старой системе и угол α между осями Ох и О 1 Х . Обозначим через х и у координаты произвольной точки М относительно старой системы, через X и Y-координаты той же точки относительно новой системы. Наша задача заключается в том, чтобы старые координаты х и у выразить через новые X и Y. В полученные формулы преобразования должны, очевидно, входить постоянные a, b и α .

Решение этой общей задачи мы получим из рассмотрения двух частных случаев.

1. Меняется начало координат, направления же осей остаются неизменными (α = 0).

2. Меняются направления осей, начало же координат остается неизменным (а = b = 0).

§ 2. Перенос начала координат.

Пусть даны две системы декартовых координат с разными началами O и O 1 и одинаковыми направлениями осей (рис. 69).

Обозначим через а и b координаты нового начала О 1 в старой системе и через х, у и X , Y -координаты произвольной точки М соответственно в старой и новой системах. Проектируя точку М на оси О 1 Х и Ох , а также точку О 1 на ось Ох , получим на оси Ох три точки О, А и Р . Величины отрезков ОА , АР и ОР связаны следующим соотношением:

| ОА | + | АР | = | ОР |. (1)

Заметив, что | ОА | = а , | ОР | = х , | АР | = | О 1 Р 1 | = Х , перепишем равенство (1) в виде:

а + X = x или x = X + а . (2)

Аналогично, проектируя М и О 1 на ось ординат, получим:

y = Y + b (3)

Итак, старая координата равна новой плюс координата нового начала по старой системе.

Из формул (2) и (3) новые координаты можно выразить через старые:

Х = х - а , (2")

Y = y - b . (3")

§ 3. Поворот осей координат.

Пусть даны две декартовы системы координат с одинаковым началом О и разными направлениями осей (рис. 70).

Пусть α есть угол между осями Ох и ОХ . Обозначим через х, у и X, Y координаты произвольной точки М соответственно в старой и новой системах:

х = | ОР | , у = | РM | ,

X = | ОР 1 |, Y = | Р 1 M |.

Рассмотрим ломаную линию ОР 1 MP и возьмем ее проекцию на ось Ох . Замечая, что проекция ломаной линии равна проекции замыкающего отрезка (гл. I, § 8) имеем:

ОР 1 MP = | ОР |. (4)

С другой стороны, проекция ломаной линии равна сумме проекций ее звеньев (гл. I, § 8); следовательно, равенство (4) запишется так:

пр ОР 1 + пр Р 1 M + пp MP = | ОР | (4")

Так как проекция направленного отрезка равна его величине, умноженной на косинус угла между осью проекций и осью, на которой лежит отрезок (гл. I, § 8), то

пр ОР 1 = X cos α

пр Р 1 M = Y cos (90° + α ) = - Y sin α ,

пp MP = 0.

Отсюда равенство (4") нам дает:

x = X cos α - Y sin α . (5)

Аналогично, проектируя ту же ломаную на ось Оу , получим выражение для у . В самом деле, имеем:

пр ОР 1 + пр Р 1 M + пp MP = пp ОР = 0.

Заметив, что

пр ОР 1 = X cos (α - 90°) = X sin α ,

пр Р 1 M = Y cos α ,

пp MP = - y ,

будем иметь:

X sin α + Y cos α - y = 0,

y = X sin α + Y cos α . (6)

Из формул (5) и (6) мы получим новые координаты X и Y выраженными через старые х и у , если разрешим уравнения (5) и (6) относительно X и Y .

Замечание. Формулы (5) и (6) могут быть получены иначе.

Из рис. 71 имеем:

х = ОР = ОМ cos (α + φ ) = ОМ cos α cos φ - ОМ sin α sin φ ,

у = РМ = ОМ sin (α + φ ) = ОМ sin α cos φ + ОМ cos α sin φ .

Так как (гл. I, § 11) OM cos φ = X , ОМ sin φ =Y , то

x = X cos α - Y sin α , (5)

y = X sin α + Y cos α . (6)

§ 4. Общий случай.

Пусть даны две декартовы системы координат с разными началами и разными направлениями осей (рис. 72).

Обозначим через а и b координаты нового начала О , по старой системе, через α -угол поворота координатных осей и, наконец, через х, у и X, Y - координаты произвольной точки М соответственно по старой и новой системам.

Чтобы выразить х и у через X и Y , введем вспомогательную систему координат x 1 O 1 y 1 , начало которой поместим в новом начале О 1 , а направления осей возьмем совпадающими с направлениями старых осей. Пусть x 1 и y 1 , обозначают координаты точки М относительно этой вспомогательной системы. Переходя от старой системы координат к вспомогательной, имеем (§ 2):

х = х 1 + а , у = у 1 + b .

х 1 = X cos α - Y sin α , y 1 = X sin α + Y cos α .

Заменяя х 1 и y 1 в предыдущих формулах их выражениями из последних формул, найдем окончательно:

x = X cos α - Y sin α + a

y = X sin α + Y cos α + b (I)

Формулы (I) содержат как частный случай формулы §§ 2 и 3. Так, при α = 0 формулы (I) обращаются в

x = X + а , y = Y + b ,

а при а = b = 0 имеем:

x = X cos α - Y sin α , y = X sin α + Y cos α .

Из формул (I) мы получим новые координаты X и Y выраженными через старые х и у , если уравнения (I) разрешим относительно X и Y .

Отметим весьма важное свойство формул (I): они линейны относительно X и Y , т. е. вида:

x = AX + BY + C , y = A 1 X + B 1 Y + C 1 .

Легко проверить, что новые координаты X и Y выразятся через старые х и у тоже формулами первой степени относительно х и у.

Г.Н.Яковлев "Геометрия"

§ 13. Переход от одной прямоугольной декартовой системы координат к другой

Выбором прямоугольной декартовой системы координат устанавливается взаимно однозначное соответствие между точками плоскости и упорядоченными парами действительных чисел. Это означает, что каждой точке плоскости соответствует единственная пара чисел и каждой упорядоченной паре действительных чисел соответствует единственная точка.

Выбор той или иной системы координат ничем не ограничен и определяется в каждом конкретном случае только соображениями удобства. Часто одно и то же множество приходится рассматривать в разных координатных системах. Одна и та же точка в разных системах имеет, очевидно, различные координаты. Множество точек (в частности, окружность, парабола, прямая) в разных системах координат задается различными уравнениями.

Выясним, как преобразуются координаты точек плоскости при переходе от одной координатной системы к другой.

Пусть на плоскости заданы две прямоугольные системы координат: О, i, j и О", i", j" (рис. 41).

Первую систему с началом в точке О и базисными векторами i и j условимся называть старой, вторую - с началом в точке О" и базисными векторами i" и j" - новой.

Положение новой системы относительно старой будем считать известным: пусть точка О" в старой системе имеет координаты (a;b ), a вектор i" образует с вектором i угол α . Угол α отсчитываем в направлении, противоположном движению часовой стрелки.

Рассмотрим произвольную точку М. Обозначим ее координаты в старой системе через (х;у ), в новой - через (х";у" ). Наша задача - установить зависимость между старыми и новыми координатами точки М.

Соединим попарно точки О и О", О" и М, О и М. По правилу треугольника получаем

OM > = OO" > + O"M > . (1)

Разложим векторы OM > и OO" > по базисным векторам i и j , а вектор O"M > по базисным векторам i" и j" :

OM > = xi + yj , OO" > = ai + bj , O"M > = x"i "+ y"j "

Теперь равенство (1) можно записать так:

xi + yj = (ai + bj ) + (x"i "+ y"j "). (2)

Новые базисные векторы i" и j" раскладываются по старым базисным векторам i и j следующим образом:

i" = cos α i + sin α j ,

j" = cos ( π / 2 + α ) i + sin ( π / 2 + α ) j = - sin α i + cos α j .

Подставив найденные выражения для i" и j" в формулу (2), получим векторное равенство

xi + yj = ai + bj + х" (cos α i + sin α j ) + у" (- sin α i + cos α j )

равносильное двум числовым равенствам:

х = а + х" cos α - у" sin α ,
у
= b + х" sin α + у" cos α

Формулы (3) дают искомые выражения для старых координат х и у точки через ее новые координаты х" и у" . Для того чтобы найти выражения для новых координат через старые, достаточно решить систему уравнении (3) относительно неизвестных х" и у" .

Итак, координаты точек при переносе начала координат в точку (а; b ) и повороте осей на угол α преобразуются по формулам (3).

Если изменяется только начало координат, а направления осей остаются прежними, то, полагая в формулах (3) α = 0, получаем

Формулы (5) называют формулами поворота .

Задача 1. Пусть координаты нового начала в старой системе (2; 3), а координаты точки А в старой системе (4; -1). Найти координаты точки А в новой системе, если направления осей остаются прежними.

По формулам (4) имеем

Ответ. A (2; -4)

Задача 2. Пусть координаты точки Р в старой системе (-2; 1), а в новой системе, направления осей которой те же самые, координаты этой точки (5; 3). Найти координаты нового начала в старой системе.

А По формулам (4) получаем

- 2 = а + 5
1 = b + 3

откуда а = - 7, b = - 2.

Ответ. (-7; -2).

Задача 3. Координаты точки А в новой системе (4; 2). Найти координаты этой точки в старой системе, если начало координат осталось прежним, а оси координат старой системы повернуты на угол α = 45°.

По формулам (5) находим

Задача 4. Координаты точки A в старой системе (2 √3 ; - √3 ). Найти координаты этой точки в новой системе, если начало координат старой системы перенесено в точку (-1;-2), а оси повернуты на угол α = 30°.

По формулам (3) имеем

Решив эту систему уравнений относительно х" и у" , найдем: х" = 4, у" = -2.

Ответ. A (4; -2).

Задача 5. Дано уравнение прямой у = 2х - 6. Найти уравнение той же прямой в новой системе координат, которая получена из старой системы поворотом осей на угол α = 45°.

Формулы поворота в данном случае имеют вид

Заменив в уравнении прямой у = 2х - 6 старые переменные х и у новыми, получим уравнение

√ 2 / 2 (x" + y" ) = 2 √ 2 / 2 (x" - y" ) - 6 ,

которое после упрощений принимает вид y" = x" / 3 - 2√2

Координаты - это величины, определяющие положение любой точки на поверхности или в пространстве в принятой системе координат. Система координат устанавливает начальные (исходные) точки, линии или плоскости для отсчета необходимых величин - начало отсчета координат и единицы их исчисления. В топографии и геодезии наиболь¬шее применение получили системы географических, прямоугольных, полярных и биполярных координат.
Географические координаты (рис. 2.8) применяются для определения положения точек поверхности Земли на эллипсоиде (шаре). В этой системе координат исходными являются плоскость начального меридиана и плос¬кость экватора. Меридианом называют линию сечения эллипсоида плоскостью, проходящей через данную точку и ось вращения Земли.

Параллелью называют линию сечения эллипсоида плоскостью, проходящей через данную точку и пер¬пендикулярную земной оси. Параллель, плоскость которой проходит через центр эллипсоида, называется экватором. Через каждую точку, лежащую на поверхности земного шара, можно провести только один меридиан и только одну параллель.
Географические координаты - это угловые величины: долгота l и широта j.
Географической долготой l называется двугранный угол, заключенный между плоскостью данного меридиана (проходящего через точку В) и плоскостью начального меридиана. За начальный (нулевой) меридиан принят меридиан, проходящий через центр главного зала Гринвичской обсерватории в пределах г. Лондона. Для точки В долгота определяется углом l = WCD. Счет долгот ведут от начального меридиана в обе стороны - на восток и на запад. В связи с этим различают западные и восточные долготы, которые изменяются от 0° до 180°.
Географической широтой j называется угол, составленный плоскостью экватора и отвесной линией, проходящей через данную точку. Если Землю принимать за шар, то для точки В (рис. 2.8) широта j определяется углом DCB. Широты, отсчитываемые от экватора к северу, называются северными, а к югу - южными, они изменяются от 0° на экваторе до 90° на полюсах.
Географические координаты могут быть получены на основании астрономических наблюдений или геодезических измерений. В первом случае их называют астрономическими, а во втором - геодезическими (L - долгота, B - широта). При астрономических наблюдениях проецирование точек на поверхность относимости осуществляется отвесными линиями, при геодезических измерениях - нормалями. Поэтому величины астрономических и геодезических координат отличаются на величину уклонения отвесной линии.
Использование разными государствами различных референц-эллипсоидов приводит к различиям координат одних и тех же пунктов, вычисленных относительно разных исходных поверхностей. Практически это выражается в общем смещении картографического изображения относительно меридианов и параллелей на картах крупного и среднего масштабов.
Прямоугольными координатами называются линейные величины - абсцисса и ордината, определяющие положение точки на плоскости относительно исходных направлений.

(рис. 2.9)
В геодезии и топографии принята правая система прямоугольных координат. Это отличает ее от левой системы координат, используемой в математике. Исходными направлениями служат две взаимно перпендикулярные линии с началом отсчета в точке их пересечения О.
Прямая ХХ (ось абсцисс) совмещается с направлением меридиана, проходящего через начало координат, или с направлением, параллельным некоторому меридиану. Прямая YY (ось ординат) проходит через точку О перпендикулярную оси абсцисс. В такой системе положение точки на плоскости определяется кратчайшим расстоянием до нее от осей координат. Положение точки А определяется длиной перпендикуляров Xа и Yа. Отрезок Xа называется абсциссой точки А, а Yа - ординатой этой точки. Прямоугольные координаты обычно выражаются в метрах. Осями абсцисс и ординат участок местности в точке О делится на четыре четверти (рис. 2.9). Название четвертей определяется принятыми обозначениями стран света. Четверти нумеруются по направлению хода часовой стрелки: I - СВ; II - ЮВ; III - ЮЗ; IV - СЗ.
В табл. 2.3 показаны знаки абсцисс Х и ординат Y для точек, находящихся в разных четвертях и даны их названия.


Таблица 2.3
Абсциссы точек, расположенные вверх от начала координат считаются положительными, а вниз от нее - отрицательными, ординаты точек, расположенные вправо - положительными, влево - отрицательными. Система плоских прямоугольных координат применяется на ограниченных участках земной поверхности, которые могут быть приняты за плоские.
Координаты, началом отсчета которых является какая-либо точка местности, называются полярными. В данной системе координат производится измерение углов ориентирования. На горизонтальной плоскости (рис. 2.10) через произвольно выбранную точку О, называемую полюсом, проводят прямую ОХ - полярную ось.

Тогда положение любой точки, например, М будет определяться радиусом - вектором r1 и углом направления a1 , а точки N - соответственно r2 и a2. Углы a1 и a2 измеряют от полярной оси по ходу часовой стрелки до радиуса-вектора. Полярная ось может располагаться произвольно или совмещаться с направлением какого-либо меридиана, проходящего через полюс О.
Система биполярных координат (рис. 2.11) представляет собой два выбранных неподвижных полюса О1 и О2 , соединенные прямой - полярной осью. Данная система координат позволяет определить положение точки М относительно полярной оси на плоскости при помощи двух углов b1 и b2, двух радиусов-векторов r1 и r2 или их комбинаций. Если известны прямоугольные координаты точек О1 и О2 , то положение точки М можно вычислить аналитическим способом.


Рис. 2.11

Рис. 2.12
Высоты точек земной поверхности. Для определения положения точек физической поверхности Земли недостаточно знать только плановые координаты X, Y или l, j, необходима третья координата - высота точки Н. Высотой точки Н (рис. 2.12) называется расстояние по отвесному направлению от данной точки (А´; В´´) до принятой основной уровенной поверхности MN. Числовое значение высоты точки называется отметкой. Высоты, отсчитываемые от основной уровенной поверхности MN, называют абсолютными высотами (АА´; ВВ´´), а определяемые относительно произвольно выбранной уровенной поверхности - условными высотами (В´В´´). Разность высот двух точек или расстояние по отвесному направлению между уровенными поверхностями, проходящими через две любые точки Земли называется относительной высотой (В´В´´) или превышением этих точек h.
В Республике Беларусь принята Балтийская система высот 1977 г. Счет высот ведется от уровенной поверхности, совпадающей со средним уровнем воды в Финском заливе, от нуля Кронштадского футштока.

Вот еще

Для определения положения точек в геодезии применяют пространственные прямоугольные, геодезические и плоские прямоугольные координаты.

Пространственные прямоугольные координаты . Начало системы координат расположено в центре O земного эллипсоида (рис. 2.2).

Ось Z направлена по оси вращения эллипсоида к северу. Ось Х лежит в пересечении плоскости экватора с начальным - гринвичским меридианом. Ось Y направлена перпендикулярно осям Z и X на восток.

Геодезические координаты . Геодезическими координатами точки являются ее широта, долгота и высота (рис. 2.2).

Геодезической широтой точки М называется угол В , образованный нормалью к поверхности эллипсоида, проходящей через данную точку, и плоскостью экватора.

Широта отсчитывается от экватора к северу и югу от 0° до 90° и называется северной или южной. Северную широту считают положительной, а южную - отрицательной.

Плоскости сечения эллипсоида, проходящие через ось OZ , называются геодезическими меридианами .

Геодезической долготой точки М называется двугранный угол L , образованный плоскостями начального (гринвичского) геодезического меридиана и геодезического меридиана данной точки.

Долготы отсчитывают от начального меридиана в пределах от 0° до 360° на восток, или от 0° до 180° на восток (положительные) и от 0° до 180° на запад (отрицательные).

Геодезической высотой точки М является ее высота Н над поверхностью земного эллипсоида.

Геодезические координаты с пространственными прямоугольными координатами связаны формулами

X = (N + H )cosB cosL ,

Y = (N+H )cosB sinL ,

Z = [(1 - e 2 ) N+H ] sinB ,

где e - первый эксцентриситет меридианного эллипса и N -радиус кривизны первого вертикала.При этом N=a/ (1 - e 2 sin 2 B ) 1/2 .

Геодезические и пространственные прямоугольные координаты точек определяют с помощью спутниковых измерений, а также путем их привязки геодезическими измерениями к точкам с известными координатами.

Отметим, что наряду с геодезическими существуют еще астрономические широта и долгота. Астрономическая широта j это - угол, составленный отвесной линией в данной точке с плоскостью экватора. Астрономическая долгота l - угол между плоскостями Гринвичского меридиана и проходящего через отвесную линию в данной точке астрономического меридиана. Астрономические координаты определяют на местности из астрономических наблюдений.

Астрономические координаты отличаются от геодезических потому, что направления отвесных линий не совпадают с направлениями нормалей к поверхности эллипсоида. Угол между направлением нормали к поверхности эллипсоида и отвесной линией в данной точке земной поверхности называется уклонением отвесной линии .


Обобщением геодезических и астрономических координат является термин - географические координаты .

Плоские прямоугольные координаты . Для решения задач инженерной геодезии от пространственных и геодезических координат переходят к более простым - плоским координатам, позволяющим изображать местность на плоскости и определять положение точек двумя координатами х и у .

Поскольку выпуклую поверхность Земли изобразить на плоскости без искажений нельзя, введение плоских координат возможно только на ограниченных участках, где искажения так малы, что ими можно пренебречь. В России принята система прямоугольных координат, основой которой является равноугольная поперечно-цилиндрическая проекция Гаусса . Поверхность эллипсоида изображается на плоскости по частям, называемым зонами. Зоны представляют собой сферические двуугольники, ограниченные меридианами, и простирающиеся от северного полюса до южного (рис. 2.3). Размер зоны по долготе равен 6°. Центральный меридиан каждой зоны называется осевым. Нумерация зон идет от Гринвича к востоку.

Долгота осевого меридиана зоны с номером N равна:

l 0 = 6°× N - 3° .

Осевой меридиан зоны и экватор изображаются на плоскости прямыми линиями (рис. 2.4). Осевой меридиан принимают за ось абсцисс x , а экватор - за ось ординат y. Их пересечение (точка O ) служит началом координат данной зоны.

Чтобы избежать отрицательных значений ординат, координаты пересечения принимают равными x 0 = 0, y 0 = 500 км, что равносильно смещению оси х к западу на 500 км.

Чтобы по прямоугольным координатам точки можно было судить, в какой зоне она расположена, к ординате y слева приписывают номер координатной зоны.

Пусть например, координаты точки А имеют вид:

x А = 6 276 427 м

y А = 12 428 566 м

Эти координаты указывают на то, что точка А находится на расстоянии 6276427 м от экватора, в западной части (y < 500 км) 12-ой координатной зоны, на расстоянии 500000 - 428566 = 71434 м от осевого меридиана.

Для пространственных прямоугольных , геодезических и плоских прямоугольных координат в России принята единая система координат СК-95, закрепленная на местности пунктами государственной геодезической сети и построенная по спутниковым и наземным измерениям по состоянию на эпоху 1995 г.

Местные системы прямоугольных координат. При строительстве различных объектовчасто используют местные (условные) системы координат, в которых направления осей и начало координат назначают, исходя из удобства их использования в ходе строительства и последующей эксплуатации объекта.

Так , при съемке железнодорожной станции ось у направляют по оси главного железнодорожного пути в направлении возрастания пикетажа, а ось х - по оси здания пассажирского вокзала.

При строительстве мостовых переходов ось х обычно совмещают с осью моста, а ось y идет в перпендикулярном направлении.

При строительстве крупных промышленных и гражданских объектов оси x и y направляют параллельно осям строящихся зданий.

Для решения большинства задач в прикладных науках необходимо знать местоположение объекта или точки, которое определяется с помощью применения одной из принятых систем координат. Кроме того, имеются системы высот, которые также определяют высотное местонахождение точки на

Что такое координаты

Координаты - числовые или буквенные значения, с помощью которых можно определить место, где расположена точка на местности. Как следствие, система координат - это совокупность однотипных значений, имеющих одинаковый принцип нахождения точки или объекта.

Нахождение местоположения точки требуется для решения многих практических задач. В такой науке, как геодезия, определение местонахождения точки в заданном пространстве - главная цель, на достижении которой строится вся последующая работа.

Большинство систем координат, как правило, определяют расположение точки на плоскости, ограниченной только двумя осями. Для того чтобы определить позицию точки в трехмерном пространстве, применяется также система высот. С ее помощью можно узнать точное местонахождение искомого объекта.

Кратко о системах координат, применяемых в геодезии

Системы координат определяют местоположение точки на территории задавая ей три значения. Принципы их расчета различны для каждой координатной системы.

Основные пространственные системы координат, применяемые в геодезии:

  1. Геодезические.
  2. Географические.
  3. Полярные.
  4. Прямоугольные.
  5. Зональные координаты Гаусса-Крюгера.

Все системы имеют свою начальную точку отсчета, величины для местонахождения объекта и области применения.

Геодезические координаты

Основной фигурой, применяемой для отсчета геодезических координат, является земной эллипсоид.

Эллипсоид - трехмерная сжатая фигура, которая наилучшим образом представляет собой фигуру земного шара. Ввиду того что земной шар - математически неправильная фигура, вместо нее для определения геодезических координат используют именно эллипсоид. Это облегчает осуществление многих расчетов для определения положения тела на поверхности.

Геодезические координаты определяются тремя значениями: геодезической широтой, долготой и высотой.

  1. Геодезическая широта - это угол, начало которого лежит на плоскости экватора, а конец - у перпендикуляра, проведенного к искомой точке.
  2. Геодезическая долгота - это угол, который отсчитывают от нулевого меридиана до меридиана, на котором находится искомая точка.
  3. Геодезическая высота - величина нормали, проведенной к поверхности эллипсоида вращения Земли от данной точки.

Географические координаты

Для решения высокоточных задач высшей геодезии необходимо различать геодезические и географические координаты. В системе, применяемой в инженерной геодезии, таких различий, ввиду небольшого пространства, охватываемого работами, как правило, не делают.

Для определения геодезических координат в качестве плоскости отсчета используют эллипсоид, а для определения географических - геоид. Геоид является математически неправильной фигурой, более приближенной к фактической фигуре Земли. За его уровненную поверхность принимают ту, что продолжена под уровнем моря в его спокойном состоянии.

Географическая система координат, применяемая в геодезии, описывает позицию точки в пространстве с указанием трех значений. долготы совпадает с геодезической, так как точкой отсчета также будет называемый Гринвичским. Он проходит через одноименную обсерваторию в городе Лондоне. определяется от экватора, проведенного на поверхности геоида.

Высота в системе местных координат, применяемой в геодезии, отсчитывается от уровня моря в его спокойном состоянии. На территории России и стран бывшего Союза отметкой, от которой производят определение высот, является Кронштадтский футшток. Он расположен на уровне Балтийского моря.

Полярные координаты

Полярная система координат, применяемая в геодезии, имеет другие нюансы произведения измерений. Она применяется на небольших участках местности для определения относительного местоположения точки. Началом отсчета может являться любой объект, отмеченный как исходный. Таким образом, с помощью полярных координат нельзя определить однозначное местонахождение точки на территории земного шара.

Полярные координаты определяются двумя величинами: углом и расстоянием. Угол отсчитывается от северного направления меридиана до заданной точки, определяя ее положение в пространстве. Но одного угла будет недостаточно, поэтому вводится радиус-вектор - расстояние от точки стояния до искомого объекта. С помощью этих двух параметров можно определить местоположение точки в местной системе.

Как правило, эта система координат используется для выполнения инженерных работ, проводимых на небольшом участке местности.

Прямоугольные координаты

Прямоугольная система координат, применяемая в геодезии, также используется на небольших участках местности. Главным элементом системы является координатная ось, от которой происходит отсчет. Координаты точки находятся как длина перпендикуляров, проведенных от осей абсцисс и ординат до искомой точки.

Северное направление оси Х и восточное оси У считаются положительными, а южное и западное - отрицательными. В зависимости от знаков и четвертей определяют нахождение точки в пространстве.

Координаты Гаусса-Крюгера

Координатная зональная система Гаусса-Крюгера схожа с прямоугольной. Различие в том, что она может применяться для всей территории земного шара, а не только для небольших участков.

Прямоугольные координаты зон Гаусса-Крюгера, по сути, являются проекцией земного шара на плоскость. Она возникла в практических целях для изображения больших участков Земли на бумаге. Искажения, возникающие при переносе, считаются незначительными.

Согласно этой системе, земной шар делится по долготе на шестиградусные зоны с осевым меридианом посередине. Экватор находится в центре по горизонтальной линии. В итоге насчитывается 60 таких зон.

Каждая из шестидесяти зон имеет собственную систему прямоугольных координат, отсчитываемую по оси ординат от Х, а по оси абсцисс - от участка земного экватора У. Для однозначного определения местоположения на территории всего земного шара перед значениями Х и У ставят номер зоны.

Значения оси Х на территории России, как правило, являются положительными, в то время как значения У могут быть и отрицательными. Для того чтобы избежать знака минус в величинах оси абсцисс, осевой меридиан каждой зоны условно переносят на 500 метров на запад. Тогда все координаты становятся положительными.

Система координат была предложена Гауссом в качестве возможной и рассчитана математически Крюгером в середине двадцатого века. С тех пор она используется в геодезии в качестве одной из основных.

Система высот

Системы координат и высот, применяемые в геодезии, используются для точного определения положения точки на территории Земли. Абсолютные высоты отсчитываются от уровня моря или другой поверхности, принятой за исходную. Кроме того, имеются относительные высоты. Последние отсчитываются как превышение от искомой точки до любой другой. Их удобно применять для работы в местной системе координат с целью упрощения последующей обработки результатов.

Применение систем координат в геодезии

Помимо вышеперечисленных, имеются и другие системы координат, применяемые в геодезии. Каждая из них имеет свои преимущества и недостатки. Есть также свои области работы, для которых актуален тот или иной способ определения местоположения.

Именно цель работы определяет, какие системы координат, применяемые в геодезии, лучше использовать. Для работы на небольших территориях удобно использовать прямоугольную и полярную системы координат, а для решения масштабных задач необходимы системы, позволяющие охватить всю территорию земной поверхности.

Начало координат

Начало координат (начало отсчёта) в евклидовом пространстве - особая точка , обычно обозначаемая буквой О , которая используется как точка отсчёта для всех остальных точек. В евклидовой геометрии начало координат может быть выбрано произвольно в любой удобной точке.

Вектор, проведённый из начала координат, в другую точку называется радиус-вектором .

Декартова система координат

Начало координат делит каждую из осей на два луча - положительную полуось и отрицательную полуось.

В частности, начало координат можно ввести на числовой оси . В этом смысле можно говорить о начале координат для разных экстенсивных величин (времени , температуры и пр.)

Полярные системы координат


Wikimedia Foundation . 2010 .

Смотреть что такое "Начало координат" в других словарях:

    начало координат - Нулевая точка (точка пересечения осей) в плоской системе координат, применяемой в графических системах, работающих с двухмерными изображениями. Координата точки задается расстоянием от начала (центра) координат по горизонтальной оси X (абсцисса)… …

    начало координат - koordinačių pradžia statusas T sritis automatika atitikmenys: angl. origin of coordinates vok. Koordinatenanfangspunkt, m; Koordinatenursprung, m rus. начало координат, n pranc. origine de cordonnées, f … Automatikos terminų žodynas

    начало координат (графопостроителя) - — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом EN plot origin … Справочник технического переводчика

    - (origin) Точка на графике, обозначающая нуль при любых измерениях. Диаграмма может иметь более одной точки отсчета. Двухфакторная квадратная диаграмма (box diagram), например, строится таким образом, что общие имеющиеся объемы каких либо факторов … Экономический словарь

    направленное реле сопротивления с характеристикой, не проходящей через начало координат - — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN offset mho distance relay … Справочник технического переводчика

    характеристика направленного реле сопротивления в виде окружности, проходящей через начало координат - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN mho characteristic … Справочник технического переводчика

    начало отсчета - Позиция на экране дисплея, от которой начинаются все системы координат. Обычно находится в левом верхнем углу экрана. Тематики информационные технологии в целом EN origin … Справочник технического переводчика

    Прямоугольная система координат прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат. Очень легко и прямо обобщается для… … Википедия

    Точка имеет три декартовых и три сферических координаты Сферическую систему координат удобно определять, соотносясь с д … Википедия

    Комплекс определений, реализующий метод координат, то есть способ определять положение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки. В… … Википедия

Книги

  • Веснадцать , Данилова Стефания , Поэт Стефания Данилова родилась 16 августа 1994 года в Петербурге, и безоговорочно влюблена в этот город. Амбидекстр, вундеркинд, полиглот, создавшая в три года первоевзрослое стихотворение.… Категория: Современная отечественная поэзия Серия: Звезда рунета Издатель: АСТ ,
  • Промысл , Рогатко Сергей Александрович , Новый роман "Промысл" писателя Сергея Рогатко, исповедующего реалистическое начало в русской литературе и подтвердившего это в своем известном романе" Мирянин", написан в жанре притчи,"… Категория: