Магический квадрат для 4 из 20. Как работает магический квадрат

Данная загадка быстро разлетелась по всему Интернету. Тысячи людей начали задаваться вопросом о том, как работает магический квадрат. Сегодня вы, наконец-то, найдете ответ!

Тайна магического квадрата

На самом деле данная загадка довольно проста и сделана с расчётом на человеческую невнимательность. Давайте разберемся, как работает магический черный квадрат, на реальном примере:

  1. Давайте загадаем любое число от 10 до 19. Теперь давайте вычтем из данного числа его составляющие цифры. К примеру, возьмем 11. Отнимем от 11 единицу и после – еще одну единицу. Выйдет 9. На самом деле не важно, какое число от 10 до 19 вы возьмете. Результат вычислений всегда будет 9. Числу 9 в «Магическом Квадрате» соответствует первая цифра с рисунками. Если присмотреться, то можно увидеть, что очень большому количеству цифр присвоены одни и те же рисунки.
  2. Что же будет, если взять число в пределах от 20 и до 29? Может, вы уже сами догадались? Правильно! Результатом вычислений всегда будет 18. Цифра 18 соответствует второй позиции на диагонали с рисунками.
  3. Если же взять число от 30 до 39, то, как можно уже угадать, выйдет число 27. Число 27 также соответствует цифре на диагонали столь необъяснимого «Магического Квадрата».
  4. Подобный алгоритм остается правдивым для любых чисел от 40 до 49, от 50 до 59 и так далее.

То есть выходит, что неважно, какое число вы загадали - «Магический Квадрат» угадает результат, ведь в клетках под номерами 9, 18, 27, 36, 45, 54, 63, 72 и 81 на самом деле находится один и тот же символ.

На самом деле данную загадку можно легко объяснить с помощью простого уравнения:

  1. Вообразите любое двухзначное число. В независимости от числа его можно представить в виде x*10+y. Десятки выступают в роли “x”, а единицы в роли “у”.
  2. Вычтите из загаданного числа цифры, которые составляют его. Складываем уравнение: (x*10+y)-(x+y)=9*x.
  3. Число, которое вышло в результате вычислений должно указывать на определенный символ в таблице.

Не важно, какая цифра будет в роли “x”, так или иначе вы получите символ, у которого номер будет кратный девяти. Для того чтобы убедится в том, что под разными номерами находится один символ, достаточно просто посмотреть на таблицу и на номера 0,9,18,27,45,54,63,72,81 и последующие.


МАГИЧЕСКИЕ КВАДРАТЫ

Родиной магических квадратов считают Китай. В Китае существует учение Фэн-шуй, согласно которому цвет, форма и физическое расположение каждого элемента в пространстве влияет на поток Ци, замедляя его, перенаправляя его или ускоряя его, что напрямую влияет на уровень энергии жителей. Для познания тайн мира боги послали императору Ю (Yu) древнейший символ, квадрат Ло Шу (Ло – река).

МАГИЧЕСКИЙ КВАДРАТ ЛО ШУ

Легенда гласит, что около четырех тысяч лет назад из бурных вод реки Ло вышла большая черепаха Шу. Люди, приносящие жертвы реке, увидели черепаху и сразу признали ее божеством. Соображения древних мудрецов показались императору Ю настолько резонными, что он приказал увековечить изображение черепахи на бумаге и скрепил его своей императорской печатью. А иначе как бы мы об этом событии узнали?

Эта черепаха на самом деле была особенной, потому что на ее панцире был нанесен странный узор из точек. Точки были нанесены упорядоченно, это привело древних философов к мысли о том, что квадрат с числами на панцире черепахи служит моделью пространства – картой мира, составленной мифическим основателем китайской цивилизации Хуан-ди. В самом деле, сумма чисел по столбцам, строкам, обеим диагоналям квадрата одинакова M=15 и равна числу дней в каждом из 24-х циклов китайского солнечного года.

Четные и нечетные номера чередуются: причем 4 четных числа (пишутся снизу вверх по убыванию) находятся в четырех углах, а 5 нечетных чисел (пишутся снизу вверх по возрастанию) образуют крест в центре площади. Пять элементов креста отражают землю, огонь, металл, воду и лес. Сумма любых разделенных центром двух чисел равна числу Хо Ти, т.е. десяти.

Четные числа (символы Земли) Ло Шу были нанесены на теле черепахи в виде черных точек, или Инь символов, а нечетные числа (символы Неба) – в виде белых точек, или Ян символов. Земля 1 (или вода) находится снизу, огонь 9 (или небо) – сверху. Не исключено, что современное изображение цифры 5, размещенной в центре композиции, обязано китайскому символу двуединственности Ян и Инь.

МАГИЧЕСКИЙ КВАДРАТ ИЗ КХАДЖУРАХО


Восточная комната

Магия Джозефа Редьярда Киплинга, создавшего образы Маугли, Багиры, Балу, Шер-Хана и, конечно, Табаки, началась накануне двадцатого века. За полстолетия до этого, в феврале 1838, года молодой британский офицер бенгальских инженерных войск Т.С. Берт, заинтересованный разговором слуг, несших его паланкин, отклонился от маршрута и наткнулся на древние храмы в джунглях Индии.

На ступенях храма Вишванатха офицер нашел надпись, свидетельствующую о древности сооружений. Спустя короткое время энергичный генерал-майор А. Каннингем начертил подробные планы Кхаджурахо. Были начаты раскопки, увенчавшиеся сенсационным открытием 22 храмов. Возвели храмы махараджи их династии Чанделов. После распада их царства джунгли поглотили постройки на тысячу лет. Найденный среди изображений обнаженных богов и богинь квадрат четвертого порядка поражал воображение.

Мало того, что у этого квадрата суммы по строкам, столбцам и диагоналям совпадали и равнялись 34. Они совпадали также по ломанным диагоналям, образующимся при сворачивании квадрата в тор, причем в обоих направлениях. За подобное колдовство цифр такие квадраты называют «дьявольскими» (или «пандиагональными», или «насик»).

Безусловно, это свидетельствовало о необычных математических способностях их создателей, превосходящих колонизаторов. Что неизбежно почувствовали люди в белых пробковых шлемах.

МАГИЧЕСКИЙ КВАДРАТ ДЮРЕРА

Знаменитый немецкий художник начала XVI века Альбрехт Дюрер составил первый в европейском искусстве магический квадрат 4х4. Сумма чисел в любой строке, столбце, диагонали, а также, что удивительно, в каждой четверти (даже в центральном квадрате) и даже сумма угловых чисел равна 34. Два средних числа в нижнем ряду указывают дату создания картины (1514). В средних квадратах первого столбика внесены исправления – цифры деформированы.

В картине с оккультной крылатой мышью Сатурном магический квадрат сложен крылатым разумом Юпитером, которые друг другу противостоят. Квадрат симметричен, так как сумма любых двух входящих в него чисел, расположенных симметрично относительно его центра, равна 17. Если сложить четыре числа, полученные ходом шахматного коня – будет 34. Воистину этот квадрат своей безупречной упорядоченностью отражает меланхолию, охватившую художника.

Утренний сон.

Европейцев с удивительными числовыми квадратами познакомил византийский писатель и языковед Мосхопулос. Его работа была специальным сочинением на эту тему и содержала примеры магических квадратов автора.

СИСТЕМАТИЗАЦИЯ МАГИЧЕСКИХ КВАДРАТОВ

В середине XVI в. в Европе появились сочинения, в которых в качестве объектов математического исследования предстали магические квадраты. Затем последовало множество других работ, в частности таких известных математиков, основоположников современной науки, как Штифель, Баше, Паскаль, Ферма, Бесси, Эйлер, Гаусс.

Магический , или волшебный квадрат – это квадратная таблица, заполненная n 2 числами таким образом, что сумма чисел в каждой строке, каждом столбце и на обеих диагоналях одинакова. Определение условное, поскольку древние придавали также значение, например, цвету.

Нормальным называется магический квадрат, заполненный целыми числами от 1 до n 2 . Нормальные магические квадраты существуют для всех порядков, за исключением n = 2 , хотя случай n = 1 тривиален – квадрат состоит из одного числа.

Сумма чисел в каждой строке, столбце и на диагоналях называется магической константой M. Магическая константа нормального волшебного квадрата зависит только от n и определяется формулой

M = n (n 2 + 1) /2

Первые значения магических констант приведены в таблице

Если в квадрате равны суммы чисел только в строках и столбцах, то он называется полумагическим . Магический квадрат называется ассоциативным или симметричным , если сумма любых двух чисел, расположенных симметрично относительно центра квадрата, равна n 2 + 1 .

Существует только один нормальный квадрат третьего порядка. Его знали многие народы. Расположение чисел в квадрате Ло Шу сходно с символическими обозначениями духов в каббале и знаками индейской астрологии.

Известен также как квадрат Сатурна. Некоторые тайные общества в Средние века видели в нем "каббалу девяти палат". Несомненно, оттенок за­претного волшебства много значил для сбережения его изображений.

Он был важен в средневековой ну­мерологии, часто использовался как амулет или средство для гадания. Каждая ячейка его отвечает мистической букве или иному символу. Прочитанные вме­сте вдоль определенной линии, эти знаки передавали ок­культные сообщения. Цифры, составляющие дату рождения, расставлялись в ячейках квадрата и затем расшифровывались в зависимости от значения и местоположения цифр.

Среди пандиагональных, как их именуют еще, дьявольских магических квадратов выделяют симметричные – идеальные. Дьявольский квадрат остается дьявольским, если производить его поворот, отражение, перестановку строки сверху вниз и наоборот, зачеркивание столбца справа или слева с приписыванием его с противоположной стороне. Всего выделяют пять преобразований, схема последнего приведена на рисунке

Существует 48 дьявольских квадратов 4×4 с точностью до поворотов и отражений. Если принять во внимание еще и симметрию относительно торических параллельных переносов, то остается только три существенно различных дьявольских квадрата 4×4:

Клод Ф. Брэгдон, известный американский архитектор, обнаружил, что, соединив одну за другой клетки только с четными или только с нечетными числами магических квадратов ломаной, мы в большинстве случаев получим изящный узор. Придуманный им узор для вентиляционной решетки в потолке Торговой палаты в Рочестере (штат Нью-Йорк), где он жил, построен из магической ломаной талисмана Ло-Шу. Брэгдон использовал «магические линии» как образцы рисунков для тканей, книжных обложек, архитектурных украшений и декоративных заставок.

Если из одинаковых дьявольских квадратов выложить мозаику (каждый квадрат должен вплотную примыкать к своим соседям), то получится нечто вроде паркета, в котором числа, стоящие в любой группе клеток 4х4, будут образовывать дьявольский квадрат. Числа в четырех клетках, следующих последовательно одна за другой, как бы они ни были расположены – по вертикали, по горизонтали или по диагонали, – в сумме всегда дают постоянную квадрата. Современные математики называют подобные квадраты «совершенными».

ЛАТИНСКИЙ КВАДРАТ

Латинский квадрат – разновидность неправильных математических квадратов, заполненная n различными символами таким образом, чтобы в каждой строке и в каждом столбце встречались все n символов (каждый по одному разу).

Латинские квадраты существуют для любого n. Любой латинский квадрат является таблицей умножения (таблицей Кэли) квазигруппы. Название «латинский квадрат» берет начало от Леонарда Эйлера, который использовал латинские буквы вместо цифр в таблице.

Два латинских квадрата называются ортогональными , если различны все упорядоченные пары символов (a,b), где a – символ в некоторой клетке первого латинского квадрата, а b – символ в той же клетке второго латинского квадрата.

Ортогональные латинские квадраты существуют для любого порядка, кроме 2 и 6. Для n являющихся степенью простого числа есть набор n–1 попарно ортогональных латинских квадратов. Если в каждой диагонали латинского квадрата все элементы различны, такой латинский квадрат называется диагональным . Пары ортогональных диагональных латинских квадратов существуют для всех порядков, кроме 2, 3 и 6. Латинский квадрат часто встречается в задачах составления расписания, поскольку в строках и столбцах числа не повторяются.

Квадрат из пар элементов двух ортогональных латинских квадратов называется греко-латинский квадратом . Подобные квадраты часто используются для построения магических квадратов и в усложненных задачах о составлении расписания.

Занимаясь греко-латинскими квадратами Эйлер доказал, что квадратов второго порядка не существует, зато были найдены квадраты 3, 4, и 5 порядков. Ни одного квадрата 6 порядка он не нашел. Им была высказана гипотеза, что не существует квадратов четных порядков, не делящееся на 4 (то есть 6, 10, 14 и т. д.). В 1901 Гастон Терри перебором подтвердил гипотезу для 6 порядка. Но в 1959 году гипотеза была опровергнута Э. Т. Паркером, Р. К. Боусом и С. С. Шрикхердом, обнаружившими греко-латинский квадрат порядка 10.

ПОЛИМИНО АРТУРА КЛАРКА


Полимино – по сложности его, безусловно, относится к категории труднейших математических квадратов. Вот как о нем пишет писатель-фантаст А. Кларк – ниже размещен отрывок из книги "Земная Империя". Очевидно, что Кларк, проживая на своем острове, он жил на Цейлоне – и его философия отрыва от социума интересна сама по себе, увлекся развлечением, которому учит бабушка мальчика, и передал его нам. Предпочтем это живое описание имеющимся систематизациям, которые передают, возможно, суть, но не дух игры.

– Ты уже достаточно большой мальчик, Дункан, и сумеешь понять эту игру… впрочем, она куда больше, чем игра. Вопреки словам бабушки, игра не впечатлила Дункана. Ну что можно сделать из пяти белых пластмассовых квадратиков?

– Прежде всего,– продолжала бабушка,– тебе нужно проверить, сколько различных узоров ты сумеешь сложить из квадратиков.

– А они при этом должны лежать на столе? – спросил Дункан.

– Да, они должны лежать, соприкасаясь. Перекрывать один квадратик другим нельзя.

Дункан принялся раскладывать квадратики.

– Ну, я могу выложить их все в прямую линию,– начал он.– Вот так… А потом могу переложить две штуки и получить букву L… А если я возьмусь за другой край, то получится буква U…

Мальчик быстро составил полдюжины сочетаний, потом еще и вдруг обнаружил, что они повторяют уже имеющиеся.

– Может, я тупой, но это все.

Дункан упустил самую простую из фигур – крест, для создания которой достаточно было выложить четыре квадратика по сторонам пятого, центрального.

– Большинство людей начинают как раз с креста,– улыбнулась бабушка.– По-моему, ты поторопился объявить себя тупым. Лучше подумай: могут ли быть еще какие-нибудь фигуры?

Сосредоточенно двигая квадратики, Дункан нашел еще три фигуры, после чего прекратил поиски.

– Теперь уже точно все, – уверенно заявил он.

– А что ты скажешь про такую фигуру?

Слегка передвинув квадратики, бабушка сложила из них подобие горбатой буквы F.

– И вот еще одна.

Дункан чувствовал себя последним идиотом, и бабушкины слова легли бальзамом на его смущенную душу:

– Ты просто молодец. Подумаешь, упустил всего две фигуры. А общее число фигур равно двенадцати. Не больше и не меньше. Теперь ты знаешь их все. Ищи хоть целую вечность – больше не найдешь ни одной.

Бабушка смела в угол пять белых квадратиков и выложила на стол дюжину ярких разноцветных пластиковых кусочков. Это были те самые двенадцать фигур, но уже в готовом виде, и каждая состояла из пяти квадратиков. Дункан уже был готов согласиться, что никаких других фигур действительно не существует.

Но раз бабушка выложила эти разноцветные полоски, значит, игра продолжается, и Дункана ждал еще один сюрприз.

– А теперь, Дункан, слушай внимательно. Эти фигуры называются «пентамино». Название произошло от греческого слова «пента», что значит «пять». Все фигуры равны по площади, поскольку каждая состоит из пяти одинаковых квадратиков. Фигур двенадцать, квадратиков – пять, следовательно, общая площадь будет равняться шестидесяти квадратикам. Правильно?

– Мм…да.

– Слушай дальше. Шестьдесят – замечательное круглое число, которое можно составить несколькими способами. Самый легкий – умножить десять на шесть. Такую площадь имеет эта коробочка: по горизонтали в ней умещается десять квадратиков, а по вертикали – шесть. Стало быть, в ней должны уместиться все двенадцать фигур. Просто, как составная картинка-загадка.

Дункан ожидал подвоха. Бабушка обожала словесные и математические парадоксы, и далеко не все они были понятии ее десятилетней жертве. Но на сей раз обошлось без парадоксов. Дно коробки было расчерчено на шестьдесят квадратиков, значит… Стоп! Площадь площадью, но ведь фигуры имеют разные очертания. Попробуй-ка загони их в коробку!

– Оставляю тебе эту задачу для самостоятельного решения,– объявила бабушка, видя, как он уныло двигает пентамино по дну коробки.– Поверь мне, их можно собрать.

Вскоре Дункан начал крепко сомневаться в бабушкиных словах. Ему с легкостью удавалось уложить в коробку десять фигур, а один раз он ухитрился втиснуть и одиннадцатую. Но очертания незаполненного пространства не совпадали с очертаниями двенадцатой фигуры, которую мальчик вертел в руках. Там был крест, а оставшаяся фигура напоминала букву Z…

Еще через полчаса Дункан уже находился на грани отчаяния. Бабушка погрузилась в диалог со своим компьютером, но время от времени заинтересованно поглядывала на него, словно говоря: «Это не так легко, как ты думал».

В свои десять лет Дункан отличался заметным упрямством. Большинство его сверстников давным-давно оставили бы всякие попытки. (Только через несколько лет он понял, что бабушка изящно проводила с ним психологический тест.) Дункан продержался без посторонней помощи почти сорок минут…

Тогда бабушка встала от компьютера и склонилась над головоломкой. Ее пальцы передвинули фигуры U, X и L…

Дно коробки оказалось целиком заполненным! Все куски головоломки заняли нужные места.

– Конечно, ты заранее знала ответ! – обиженно протянул Дункан.

– Ответ? – переспросила бабушка.– А как ты думаешь, сколькими способами можно уложить пентамино в эту коробку?

Вот она, ловушка. Дункан провозился почти час, так и не найдя решения, хотя за это время он перепробовал не меньше сотни вариантов. Он думал, что существует всего один способ. А их может быть… двенадцать? Или больше?

– Так сколько, по-твоему, может быть способов? – снова спросила бабушка.

– Двадцать,– выпалил Дункан, думая, что уж теперь бабушка не будет возражать.

– Попробуй снова.

Дункан почуял опасность. Забава оказалась куда хитрее, чем он думал, и мальчик благоразумно решил не рисковать.

– Вообще-то, я не знаю,– сказал он, мотая головой.

– А ты восприимчивый мальчик,– снова улыбнулась бабушка.– Интуиция – опасный проводник, но порою другого у нас нет. Могу тебя обрадовать: угадать правильный ответ здесь невозможно. Существует более двух тысяч различных способов укладки пентамино в эту коробку. Точнее, две тысячи триста тридцать девять. И что ты на это скажешь?

Вряд ли бабушка его обманывала. Но Дункан был настолько раздавлен своей неспособностью найти решение, что не удержался и выпалил:

– Не верю!

Элен редко выказывала раздражение. Когда Дункан чем-то обижал ее, она просто становилась холодной и отрешенной. Однако сейчас бабушка лишь усмехнулась и что-то выстучала на клавиатуре компьютера.

– Взгляни сюда,– предложила она.

На экране появился набор из двенадцати разноцветных пентамино, заполняющих прямоугольник размером десять на шесть. Через несколько секунд его сменило другое изображение, где фигуры, скорее всего, располагались уже по-другому (точно сказать Дункан не мог, поскольку не запомнил первую комбинацию). Вскоре изображение опять поменялось, потом еще и еще… Так продолжалось, пока бабушка не остановила программу.

– Даже при большой скорости компьютеру понадобится пять часов, чтобы перебрать все способы,– пояснила бабушка.– Можешь поверить мне на слово: все они разные. Если бы не компьютеры, сомневаюсь, что люди нашли бы все способы обычным перебором вариантов.

Дункан долго глядел на двенадцать обманчиво простых фигур. Он медленно переваривал бабушкины слова. Это было первое в его жизни математическое откровение. То, что он так опрометчиво посчитал обыкновенной детской игрой, вдруг стало разворачивать перед ним бесконечные тропинки и горизонты, хотя даже самый одаренный десятилетний ребенок вряд ли сумел бы ощутить безграничность этой вселенной.

Но тогда восторг и благоговение Дункана были пассивными. Настоящий взрыв интеллектуального наслаждения случился позже, когда он самостоятельно отыскал свой первый способ укладки пентамино. Несколько недель Дункан везде таскал с собой пластмассовую коробочку. Все свободное время он тратил только на пентамино. Фигуры превратитесь в личных друзей Дункана. Он называл их по буквам, которые те напоминали, хотя в ряде случае сходство было более чем отдаленным. Пять фигур – F, I, L, Р, N шли вразнобой, зaто остальные семь повторяли последовательность латинского алфавита: Т, U, V, W, X, Y, Z.

Однажды, в состоянии не то геометрического транса, не то геометрического экстаза, который больше не повторялся, Дункан менее чем за час нашел пять вариантов укладки. Возможно, даже Ньютон, Эйнштейн или Чэнь-цзы в свои моменты истины не ощущали большего родства с богами математики, чем Дункан Макензи.

Вскоре он сообразил, причем сам, без бабушкиных подсказок, что пентамино можно уложить в прямоугольник с другими размерами сторон. Довольно легко Дункан нашел несколько вариантов для прямоугольников 5 на 12 и 4 на 15. Затем он целую неделю мучился, пытаясь загнать двенадцать фигур в более длинный и узкий прямоугольник 3 на 20. Снова и снова он начинал заполнять коварное пространство и… получат дыры в прямоугольнике и «лишние» фигуры.

Сокрушенный, Дункан наведался к бабушке, где его ждал новый сюрприз.

– Я рада твоим опытам,– сказала Элен.– Ты исследовал все возможности, пытаясь вывести общую закономерность. Так всегда поступают математики. Но ты ошибаешься: решения для прямоугольника три на двадцать все-таки существуют. Их всего два, и если ты найдешь одно, то сумеешь отыскать и второе.

Окрыленный бабушкиной похвалой, Дункан с новыми силами продолжил «охоту на пентамино». Еще через неделю он начал понимать, какой непосильный груз взвалил на свои плечи. Количество способов, которым можно расположить двенадцать фигур, просто ошеломляло Дункана. Более того, ведь каждая фигура имела четыре положения!

И вновь он явился к бабушке, выложив ей все свои затруднения. Если для прямоугольника 3 на 20 существовало только два варианта, сколько же времени понадобится, чтобы их найти?

– Изволь, я тебе отвечу,– сказала бабушка.– Если бы ты действовал как безмозглый компьютер, занимаясь простым перебором комбинаций и тратя на каждую по одной секунде, тебе понадобилось бы…– Здесь она намеренно сделала паузу.– Тебе понадобилось бы более шести миллионов… да, более шести миллионов лет.

Земных или титанских? Этот вопрос мгновенно возник в мозгу Дункана. Впрочем, какая разница?

– Но ты отличаешься от безмозглого компьютера,– продолжала бабушка.– Ты сразу видишь заведомо непригодные комбинации, и потому тебе не надо тратить время на их проверку. Попробуй еще раз.

Дункан повиновался, уже без энтузиазма и веры в успех. А потом ему в голову пришла блестящая идея.

Карл сразу же заинтересовался пентамино и принял вызов. Он взял у Дункана коробочку с фигурами и исчез на несколько часов.

Когда Карл позвонил ему, вид у друга был несколько расстроенный.

– А ты уверен, что эта задача действительно имеет решение? – спросил он.

– Абсолютно уверен. Их целых два. Неужели ты так и не нашел хотя бы одно? Я-то думал, ты здорово соображаешь в математике.

– Представь себе, соображаю, потому и знаю, каких трудов стоит твоя задачка. Нужно проверить… миллион миллиардов возможных комбинаций.

– А откуда ты узнал, что их столько? – спросил Дункан, довольный тем, что хоть чем-то сумел заставить друга растерянно чесать в затылке.

Карл скосил глаза на лист бумаги, заполненный какими-то схемами и цифрами.

– Если исключить недопустимые комбинации и учесть симметрию и возможность поворота… получается факториал… суммарное число перестановок… ты все равно не поймешь. Я тебе лучше покажу само число.

Он поднес к камере другой лист, на котором была крупно изображена внушительная вереница цифр:

1 004 539 160 000 000.

Дункан ничего не смыслил в факториалах, однако в точности подсчетов Карла не сомневался. Длиннющее число ему очень понравилось.

– Так ты собрался бросить эту задачу? – осторожно спросил Дункан.

– Еще чего! Я просто хотел тебе показать, насколько она трудна.

Лицо Карла выражало мрачную решимость. Произнеся эти слова, он отключился.

На следующий день Дункана ожидало одно из величайших потрясений в его мальчишеской жизни. С экрана на него смотрело осунувшееся, с воспаленными глазами, лицо Карла. Чувствовалось, он провел бессонную ночь.

– Ну вот и все,– усталым, но торжествующим голосом возвестил он.

Дункан едва верил своим глазам. Ему казалось, что шансы на успех ничтожно малы. Он даже убедил себя в этом. И вдруг… Перед ним лежал прямоугольник три на двадцать, заполненный всеми двенадцатью фигурами пентамино.

Потом Карл поменял местами и перевернул фигуры на концах, оставив центральную часть нетронутой. От усталости у него слегка дрожали пальцы.

– Это второе решение,– пояснил он.– А теперь я отправляюсь спать. Так что спокойной ночи или доброго утра – это уж как тебе угодно.

Посрамленный Дункан еще долго глядел в погасший экран. Он не знал, какими путями двигался Карл, нащупывая решение головоломки. Но он знал, что его друг вышел победителем. Наперекор всему.

Он не завидовал победе друга. Дункан слишком любил Карла и всегда радовался его успехам, хотя нередко сам оказывался побежденной стороной. Но в сегодняшнем триумфе друга было что-то иное, что-то почти магическое.

Дункан впервые увидел, какой силой обладает интуиция. Он столкнулся с загадочной способностью разума вырываться за пределы фактов и отбрасывать в сторону мешающую логику. За считаные часы Карл выполнил колоссальную работу, превзойдя самый быстродействующий компьютер.

Впоследствии Дункан узнал, что подобными способностями обладают все люди, но используют они их крайне редко – возможно, один раз в жизни. У Карла этот дар получил исключительное развитие… С того момента Дункан стал серьезно относиться к рассуждениям друга, даже самым нелепым и возмутительным с точки зрения здравого смысла.

Это было двадцать лет назад. Дункан не помнил, куда делись пластмассовые фигуры пентамино. Возможно, так и остались у Карла.

Бабушкин подарок стал их новым воплощением, теперь уже в виде кусочков разноцветного камня. Удивительный, нежно-розового оттенка гранит был с холмов Галилея, обсидиан – с плато Гюйгенса, а псевдомрамор – с гряды Гершеля. И среди них… сначала Дункан подумал, что ошибся. Нет, так оно и есть: то был самый редкий и загадочный минерал Титана. Крест каменного пентамино бабушка сделала из титанита. Этот иссиня-черный, с золотистыми вкраплениями минерал не спутаешь ни с чем. Таких крупных кусков Дункан еще не видел и мог только догадываться, какова его стоимость.

– Не знаю, что и сказать,– пробормотал он.– Какая красота. Такое я вижу в первый раз.

Он обнял худенькие бабушкины плечи и вдруг почувствовал, что они дрожат и ей никак не унять эту дрожь. Дункан бережно держал ее в своих объятиях, пока плечи не перестали дрожать. В такие мгновения слова не нужны. Отчетливее, чем прежде, Дункан понимал: он последняя любовь в опустошенной жизни Элен Макензи. И теперь он улетает, оставляя ее наедине с воспоминаниями.

БОЛЬШИЕ МАГИЧЕСКИЕ КВАДРАТЫ

Китайский математик XIII века Ян Хуэй был знаком с треугольником Паскаля (арифметическим треугольником). Он оставил изложение методов решения уравнений 4-й и высших степеней, встречаются правила решения полного квадратного уравнения, суммирования прогрессий, приемы построения магических квадратов. Он сумел построить магический квадрат шестого порядка, причем последний оказался почти ассоциативным (в нем только две пары центрально противолежащих чисел не дают сумму 37).

Бенджамин Франклин составил квадрат 16×16, который помимо наличия постоянной суммы 2056 во всех строках, столбцах и диагоналях имел еще одно дополнительное свойство. Если вырезать из листа бумаги квадрат 4×4 и уложить этот лист на большой квадрат так, чтобы 16 клеток большего квадрата попали в эту прорезь, то сумма чисел, появившихся в этой прорези, куда бы мы ее не положили, будет одна и та же – 2056.

Самым ценным в этом квадрате является то, что его довольно просто превратить в идеальный магический квадрат, в то время как построение идеальных магических квадратов – нелегкая задача. Франклин называл этот квадрат "самым очаровательным волшебством из всех магических квадратов, когда-либо сотворенных чародеями".

МАГИЧЕСКИЙ КВАДРАТ, квадратная таблица из целых чисел, в которой суммы чисел вдоль любой строки, любого столбца и любой из двух главных диагоналей равны одному и тому же числу.

Магический квадрат – древнекитайского происхождения. Согласно легенде, во времена правления императора Ю (ок. 2200 до н.э.) из вод Хуанхэ (Желтой реки) всплыла священная черепаха, на панцире которой были начертаны таинственные иероглифы (рис. 1,а ), и эти знаки известны под названием ло-шу и равносильны магическому квадрату, изображенному на рис. 1,б . В 11 в. о магических квадратах узнали в Индии , а затем в Японии , где в 16 в. магическим квадратам была посвящена обширная литература. Европейцев с магическими квадратами познакомил в 15 в. византийский писатель Э.Мосхопулос. Первым квадратом, придуманным европейцем, считается квадрат А.Дюрера (рис. 2), изображенный на его знаменитой гравюре Меланхолия 1 . Дата создания гравюры (1514) указана числами, стоящими в двух центральных клетках нижней строки. Магическим квадратам приписывали различные мистические свойства. В 16 в. Корнелий Генрих Агриппа построил квадраты 3-го, 4-го, 5-го, 6-го, 7-го, 8-го и 9-го порядков, которые были связаны с астрологией 7 планет. Бытовало поверье, что выгравированный на серебре магический квадрат защищает от чумы. Даже сегодня среди атрибутов европейских прорицателей можно увидеть магические квадраты.

В 19 и 20 вв. интерес к магическим квадратам вспыхнул с новой силой. Их стали исследовать с помощью методов высшей алгебры и операционного исчисления.

Каждый элемент магического квадрата называется клеткой. Квадрат, сторона которого состоит из n клеток, содержит n 2 клеток и называется квадратом n -го порядка. В большинстве магических квадратов используются первые n последовательных натуральных чисел. Сумма S чисел, стоящих в каждой строке, каждом столбце и на любой диагонали, называется постоянной квадрата и равна S = n (n 2 + 1)/2. Доказано, что n і 3. Для квадрата 3-го порядка S = 15, 4-го порядка – S = 34, 5-го порядка – S = 65.

Две диагонали, проходящие через центр квадрата, называются главными диагоналями. Ломаной называется диагональ, которая, дойдя до края квадрата, продолжается параллельно первому отрезку от противоположного края (такую диагональ образуют заштрихованные клетки на рис. 3). Клетки, симметричные относительно центра квадрата, называются кососимметричными. Таковы, например, клетки a и b на рис. 3.

Правила построения магических квадратов делятся на три категории в зависимости от того, каков порядок квадрата: нечетен, равен удвоенному нечетному числу или равен учетверенному нечетному числу. Общий метод построения всех квадратов неизвестен, хотя широко применяются различные схемы, некоторые из которых мы рассмотрим ниже.

Магические квадраты нечетного порядка можно построить с помощью метода французского геометра 17 в. А.де ла Лубера. Рассмотрим этот метод на примере квадрата 5-го порядка (рис. 4). Число 1 помещается в центральную клетку верхней строки. Все натуральные числа располагаются в естественном порядке циклически снизу вверх в клетках диагоналей справа налево. Дойдя до верхнего края квадрата (как в случае числа 1), продолжаем заполнять диагональ, начинающуюся от нижней клетки следующего столбца. Дойдя до правого края квадрата (число 3), продолжаем заполнять диагональ, идущую от левой клетки строкой выше. Дойдя до заполненной клетки (число 5) или угла (число 15), траектория спускается на одну клетку вниз, после чего процесс заполнения продолжается.

Метод Ф.де ла Ира (1640–1718) основан на двух первоначальных квадратах. На рис. 5 показано, как с помощью этого метода строится квадрат 5-го порядка. В клетку первого квадрата вписываются числа от 1 до 5 так, что число 3 повторяется в клетках главной диагонали, идущей вправо вверх, и ни одно число не встречается дважды в одной строке или в одном столбце. То же самое мы проделываем с числами 0, 5, 10, 15, 20 с той лишь разницей, что число 10 теперь повторяется в клетках главной диагонали, идущей сверху вниз (рис. 5,б ). Поклеточная сумма этих двух квадратов (рис. 5,в ) образует магический квадрат. Этот метод используется и при построении квадратов четного порядка.

Если известен способ построения квадратов порядка m и порядка n , то можно построить квадрат порядка m ґ n . Суть этого способа показана на рис. 6. Здесь m = 3 и n = 3. Более крупный квадрат 3-го порядка (с числами, помеченными штрихами) строится методом де ла Лубера. В клетку с числом 1ў (центральную клетку верхнего ряда) вписывается квадрат 3-го порядка из чисел от 1 до 9, также построенный методом де ла Лубера. В клетку с числом 2ў (правую в нижней строке) вписывается квадрат 3-го порядка с числами от 10 до 18; в клетку с числом 3ў – квадрат из чисел от 19 до 27 и т.д. В результате мы получим квадрат 9-го порядка. Такие квадраты называются составными.

МАГИЧЕСКИЙ КВАДРАТ
квадратная таблица из целых чисел, в которой суммы чисел вдоль любой строки, любого столбца и любой из двух главных диагоналей равны одному и тому же числу. Магический квадрат - древнекитайского происхождения. Согласно легенде, во времена правления императора Ю (ок. 2200 до н.э.) из вод Хуанхэ (Желтой реки) всплыла священная черепаха, на панцире которой были начертаны таинственные иероглифы (рис. 1,а), и эти знаки известны под названием ло-шу и равносильны магическому квадрату, изображенному на рис. 1,б. В 11 в. о магических квадратах узнали в Индии, а затем в Японии, где в 16 в. магическим квадратам была посвящена обширная литература. Европейцев с магическими квадратами познакомил в 15 в. византийский писатель Э.Мосхопулос. Первым квадратом, придуманным европейцем, считается квадрат А. Дюрера (рис. 2), изображенный на его знаменитой гравюре Меланхолия 1. Дата создания гравюры (1514) указана числами, стоящими в двух центральных клетках нижней строки. Магическим квадратам приписывали различные мистические свойства. В 16 в. Корнелий Генрих Агриппа построил квадраты 3-го, 4-го, 5-го, 6-го, 7-го, 8-го и 9-го порядков, которые были связаны с астрологией 7 планет. Бытовало поверье, что выгравированный на серебре магический квадрат защищает от чумы. Даже сегодня среди атрибутов европейских прорицателей можно увидеть магические квадраты.



В 19 и 20 вв. интерес к магическим квадратам вспыхнул с новой силой. Их стали исследовать с помощью методов высшей алгебры и операционного исчисления. Каждый элемент магического квадрата называется клеткой. Квадрат, сторона которого состоит из n клеток, содержит n2 клеток и называется квадратом n-го порядка. В большинстве магических квадратов используются первые n последовательных натуральных чисел. Сумма S чисел, стоящих в каждой строке, каждом столбце и на любой диагонали, называется постоянной квадрата и равна S = n(n2 + 1)/2. Доказано, что n і 3. Для квадрата 3-го порядка S = 15, 4-го порядка - S = 34, 5-го порядка - S = 65. Две диагонали, проходящие через центр квадрата, называются главными диагоналями. Ломаной называется диагональ, которая, дойдя до края квадрата, продолжается параллельно первому отрезку от противоположного края (такую диагональ образуют заштрихованные клетки на рис. 3). Клетки, симметричные относительно центра квадрата, называются кососимметричными. Таковы, например, клетки a и b на рис. 3.



Правила построения магических квадратов делятся на три категории в зависимости от того, каков порядок квадрата: нечетен, равен удвоенному нечетному числу или равен учетверенному нечетному числу. Общий метод построения всех квадратов неизвестен, хотя широко применяются различные схемы, некоторые из которых мы рассмотрим ниже. Магические квадраты нечетного порядка можно построить с помощью метода французского геометра 17 в. А.де ла Лубера. Рассмотрим этот метод на примере квадрата 5-го порядка (рис. 4). Число 1 помещается в центральную клетку верхней строки. Все натуральные числа располагаются в естественном порядке циклически снизу вверх в клетках диагоналей справа налево. Дойдя до верхнего края квадрата (как в случае числа 1), продолжаем заполнять диагональ, начинающуюся от нижней клетки следующего столбца. Дойдя до правого края квадрата (число 3), продолжаем заполнять диагональ, идущую от левой клетки строкой выше. Дойдя до заполненной клетки (число 5) или угла (число 15), траектория спускается на одну клетку вниз, после чего процесс заполнения продолжается.



Метод Ф. де ла Ира (1640-1718) основан на двух первоначальных квадратах. На рис. 5 показано, как с помощью этого метода строится квадрат 5-го порядка. В клетку первого квадрата вписываются числа от 1 до 5 так, что число 3 повторяется в клетках главной диагонали, идущей вправо вверх, и ни одно число не встречается дважды в одной строке или в одном столбце. То же самое мы проделываем с числами 0, 5, 10, 15, 20 с той лишь разницей, что число 10 теперь повторяется в клетках главной диагонали, идущей сверху вниз (рис. 5,б). Поклеточная сумма этих двух квадратов (рис. 5,в) образует магический квадрат. Этот метод используется и при построении квадратов четного порядка.



Если известен способ построения квадратов порядка m и порядка n, то можно построить квадрат порядка mґn. Суть этого способа показана на рис. 6. Здесь m = 3 и n = 3. Более крупный квадрат 3-го порядка (с числами, помеченными штрихами) строится методом де ла Лубера. В клетку с числом 1ў (центральную клетку верхнего ряда) вписывается квадрат 3-го порядка из чисел от 1 до 9, также построенный методом де ла Лубера. В клетку с числом 2ў (правую в нижней строке) вписывается квадрат 3-го порядка с числами от 10 до 18; в клетку с числом 3ў - квадрат из чисел от 19 до 27 и т.д. В результате мы получим квадрат 9-го порядка. Такие квадраты называются составными.



Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "МАГИЧЕСКИЙ КВАДРАТ" в других словарях:

    Квадрат, разделенный на равное число n столбцов и строк, со вписанными в полученные клетки первыми n2 натуральными числами, которые дают в сумме по каждому столбцу, каждой строке и двум большим диагоналям одно и то же число … Большой Энциклопедический словарь

    МАГИЧЕСКИЙ КВАДРАТ, квадратная МАТРИЦА, разделенная на клетки и заполненная числами или буквами определенным образом, фиксирующим особую магическую ситуацию. Самый распространенный квадрат с буквами это SATOR, составленный из слов SATOR, AREPO,… … Научно-технический энциклопедический словарь

    Квадрат, разделённый на равное число п столбцов и строк, со вписанными в полученные клетки натуральными числами от 1 до п2, к рые дают в сумме по каждому столбцу, каждой строке и двум большим диагоналям одно и то же число. На рис. пример М. к. с… … Естествознание. Энциклопедический словарь

    Магический, или волшебный квадрат это квадратная таблица, заполненная числами таким образом, что сумма чисел в каждой строке, каждом столбце и на обеих диагоналях одинакова. Если в квадрате равны суммы чисел только в строках и столбцах, то … Википедия

    Квадрат, разделённый на равное число n столбцов и строк, со вписанными в полученные клетки первыми n2 натуральными числами, которые дают в сумме по каждому столбцу, каждой строке и двум большим диагоналям одно и то же число. На рисунке пример… … Энциклопедический словарь

    Квадрат, разделённый на равное число n столбцов и строк, со вписанными в полученные клетки первыми n2 натуральными числами, которые дают в сумме по каждому столбцу, каждой строке и двум большим диагоналям одно и то же число [равное, как… … Большая советская энциклопедия

    Квадратная таблица целых чисел от 1 до n2, удовлетворяющая следующим условиям: где s=n(n2+1)/2. Рассматриваются также более общие М. к., в к рых не требуется, чтобы Любое число а, однозначно характеризуется парой вычетов (a, b)по модулю п(цифрами … Математическая энциклопедия

    Книжн. Квадрат, разделённый на части, в каждую из которых вписана цифра, дающая в сумме вместе с другими по горизонтали, вертикали или диагонали одно и то же число. БТС, 512 … Большой словарь русских поговорок

    - (греч. magikos, от magos маг). Волшебный, к магии относящийся. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. МАГИЧЕСКИЙ волшебный. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907 … Словарь иностранных слов русского языка

    Является трёхмерной версией магического квадрата. Традиционным (классическим) магическим кубом порядка n называется куб размерами n×n×n, заполненный различными натуральными числами от 1 до n3 так, что суммы чисел в любом из 3n2 рядов,… … Википедия

Книги

  • Магический квадрат , Ирина Бйорно , «Магический Квадрат» – сборник повестей и рассказов, написанных в стиле магического реализма, где действительность тесно переплетается с магией и фантазией, образуя новый, магический стиль –… Категория: Ужасы и Мистика Издатель: Издательские решения , электронная книга (fb2, fb3, epub, mobi, pdf, html, pdb, lit, doc, rtf, txt)

Введение

Великие ученые древности считали количественные отношения основой сущности мира. Поэтому числа и их соотношения занимали величайшие умы человечества. «В дни моей юности я в свободное время развлекался тем, что составлял… магические квадраты»- писал Бенджамин Франклин. Магический квадрат- это квадрат, сумма чисел которого в каждом горизонтальном ряду, в каждом вертикальном ряду и по каждой из диагоналей одна и та же.

Некоторые выдающиеся математики посвятили свои работы магическим квадратам и полученные ими результаты оказали влияние на развитие групп, структур, латинских квадратов, определителей, разбиений, матриц, сравнений и других нетривиальных разделов математики.

Цель настоящего реферата - знакомство с различными магическими квадратами, латинскими квадратами и изучение областей их применения.

Магические квадраты

Полного описания всех возможных магических квадратов не получено и до сего времени. Магических квадратов 2х2 не существует. Существует единственный магический квадрат 3х3, так как остальные магические квадраты 3х3 получаются из него либо поворотом вокруг центра, либо отражением относительно одной из его осей симметрии.

Расположить натуральные числа от 1 до 9 в магический квадрат 3х3 можно 8 различными способами:

  • 9+5+1
  • 9+4+2
  • 8+6+2
  • 8+5+2
  • 8+4+3
  • 7+6+2
  • 7+5+3
  • 6+5+4

В магическом квадрате 3х3 магической постоянной 15 должны быть равны сумме трех чисел по 8 направлениям: по 3 строкам, 3 столбцам и 2 диагоналям. Так как число, стоящее в центре, принадлежит 1 строке, 1 столбцу и 2 диагоналям, оно входит в 4 из 8 троек, дающих в сумме магическую постоянную. Такое число только одно: это 5. Следовательно, число, стоящее в центре магического квадрата 3х3, уже известно: оно равно 5.

Рассмотрим число 9. Оно входит только в 2 тройки чисел. Мы не можем поместить его в угол, так как каждая угловая клетка принадлежит 3 тройкам: строке, столбцу и диагонали. Следовательно, число 9 должно стоять в какой-то клетке, примыкающей к стороне квадрата в ее середине. Из-за симметрии квадрата безразлично, какую из сторон мы выберем, поэтому пишем 9 над числом 5, стоящим в центральной клетке. По обе стороны от девятки в верхней строке мы можем вписать только числа 2 и 4. Какое из этих двух чисел окажется в правом верхнем углу и какое в левом, опять - таки не имеет значения, так как одно расположение чисел переходит в другое при зеркальном отражении. Остальные клетки заполняются автоматически. Проведенное нами простое построение магического квадрата 3х3 доказывает его единственность.

Такой магический квадрат был у древних китайцев символом огромного значения. Цифра 5 в середине означала землю, а вокруг нее в строгом равновесии располагались огонь (2 и 7), вода (1 и 6),

дерево (3 и 8), металл (4 и 9).

С увеличением размеров квадрата (числа клеток) быстро растет количество возможных магических квадратов такого размера. Существует 880 магических квадратов порядка 4 и 275 305 224 магических квадратов порядка 5. Причем, квадраты 5х5 были известны еще в средние века. Мусульмане, например, очень благоговейно относились к таким квадратом с цифрой 1 в середине, считая его символом единства Аллаха.

Магический квадрат Пифагора

Великий ученый Пифагор, основавший религиозно - философское учение, провозгласившее количественные отношения основой сущности вещей, считал, что сущность человека заключается тоже в числе - дате рождения. Поэтому с помощью магического квадрата Пифагора можно познать характер человека, степень отпущенного здоровья и его потенциальные возможности, раскрыть достоинства и недостатки и тем самым выявить, что следует предпринять для его совершенствования.

Для того, чтобы понять, что такое магический квадрат Пифагора и как подсчитываются его показатели, сделаю его расчет на своем примере. А чтобы убедиться, что результаты подсчета действительно соответствуют реальному характеру той или иной личности, вначале я проверю его на себе. Для этого я буду делать расчет по своей дате рождения. Итак, моя дата рождения 20.08.1986. Сложим цифры дня, месяца и года рождения (без учета нулей): 2+8+1+9+8+6=34. Далее складываем цифры результата: 3+4=7. Затем из первой суммы вычитаем удвоенную первую цифру дня рождения: 34-4=30. И вновь складываем цифры последнего числа:

3+0=3. Осталось сделать последние сложения - 1-й и 3-й и 2-й и 4-й сумм: 34+30=64, 7+3=10. Получили числа 20.08.1986,34,7,30, 64,10.

и составляем магический квадрат так, чтобы все единицы этих чисел вошли в ячейку 1, все двойки - в ячейку 2 и т. д. Нули при этом во внимание не принимаются. В результате мой квадрат будет выглядеть следующим образом:

Ячейки квадрата означают следующее:

Ячейка 1 - целеустремленность, воля, упорство, эгоизм.

  • 1 - законченные эгоисты, стремятся из любого положения извлечь максимальную выгоду.
  • 11 - характер, близкий к эгоистическому.
  • 111 - «золотая середина». Характер спокойный, покладистый, коммуникабельный.
  • 1111 - люди сильного характера, волевые. Мужчины с таким характером подходят на роль военных - профессионалов, а женщины держат свою семью в кулаке.
  • 11111 - диктатор, самодур.
  • 111111 - человек жестокий, способный совершить невозможное; нередко попадает под влияние какой - то идеи.

Ячейка 2 - биоэнергетика, эмоциональность, душевность, чувственность. Количество двоек определяет уровень биоэнергетики.

Двоек нет - открыт канал для интенсивного набора биоэнергетики. Эти люди воспитаны и благородны от природы.

  • 2 - обычные в биоэнергетическом отношении люди. Такие люди очень чувствительны к изменениям в атмосфере.
  • 22 - относительно большой запас биоэнергетики. Из таких людей получаются хорошие врачи, медсестры, санитары. В семье таких людей редко у кого бывают нервные стрессы.
  • 222 - знак экстрасенса.

Ячейка 3 - точность, конкретность, организованность, аккуратность, пунктуальность, чистоплотность, скупость, наклонность к постоянному «восстановлению справедливости».

Нарастание троек усиливает все эти качества. С ними человеку есть смысл искать себя в науках, особенно точных. Перевес троек порождает педантов, людей в футляре.

Ячейка 4 - здоровье. Это связано с экгрегором, то есть энергетическим пространством, наработанным предками и защищающим человека. Отсутствие четверок свидетельствует о болезненности человека.

  • 4 - здоровье среднее, необходимо закалять организм. Из видов спорта рекомендуются плавание и бег.
  • 44 - здоровье крепкое.
  • 444 и более - люди с очень крепким здоровьем.

Ячейка 5 - интуиция, ясновидение, начинающееся проявляться у таких людей уже на уровне трех пятерок.

Пятерок нет - канал связи с космосом закрыт. Эти люди часто

ошибаются.

  • 5 - канал связи открыт. Эти люди могут правильно рассчитать ситуацию извлечь из нее максимальную пользу.
  • 55 - сильно развита интуиция. Когда видят «вещие сны», могут предугадывать ход событий. Подходящие для них профессии - юрист, следователь.
  • 555 - почти ясновидящие.
  • 5555 - ясновидящие.

Ячейка 6 - заземленность, материальность, расчет, склонность к количественному освоению мира и недоверие к качественным скачкам и тем более к чудесам духовного порядка.

Шестерок нет - этим людям необходим физический труд, хотя они его, как правило, не любят. Они наделены неординарным воображением, фантазией, художественным вкусом. Тонкие натуры, они тем не менее способны на поступок.

  • 6 - могут заниматься творчеством или точными науками, но физический труд является обязательным условием существования.
  • 66 - люди очень заземлены, тянутся к физическому труду, хотя как раз для них он не обязателен; желательна умственная деятельность либо занятия искусством.
  • 666 - знак Сатаны, особый и зловещий знак. Эти люди обладают повышенным темпераментом, обаятельны, неизменно становятся в обществе центром внимания.
  • 6666 - эти люди в своих предыдущих воплощениях набрали слишком много заземленности, они очень много трудились и не представляют свою жизнь без труда. Если в их квадрате есть

девятки, им обязательно нужно заниматься умственной деятельностью, развивать интеллект, хотя бы получить высшее образование.

Ячейка 7 - количество семерок определяет меру таланта.

  • 7 - чем больше они работают, тем больше получают впоследствии.
  • 77 - очень одаренные, музыкальные люди, обладают тонким художественным вкусом, могут иметь склонность к изобразительному искусству.
  • 777 - эти люди, как правило, приходят на Землю ненадолго. Они добры, безмятежны, болезненно воспринимают любую несправедливость. Они чувствительны, любят мечтать, не всегда чувствуют реальность.
  • 7777 - знак Ангела. Люди с таким знаком умирают в младенчестве, а если и живут, то их жизни постоянно угрожает опасность.

Ячейка 8 - карма, долг, обязанность, ответственность. Количество восьмерок определяет степень чувства долга.

Восьмерок нет - у этих людей почти полностью отсутствует чувство долга.

  • 8 - натуры ответственные, добросовестные, точные.
  • 88 - у этих людей развитое чувство долга, их всегда отличает желание помочь другим, особенно слабым, больным, одиноким.
  • 888 - знак великого долга, знак служения народу. Правитель с тремя восьмерками добивается выдающихся результатов.
  • 8888 - эти люди обладают парапсихологическими способностями и исключительной восприимчивостью к точным наукам. Им открыты сверхъестественные пути.

Ячейка 9 - ум, мудрость. Отсутствие девяток - свидетельство того, что умственные способности крайне ограничены.

  • 9 - эти люди должны всю жизнь упорно трудиться, чтобы восполнить недостаток ума.
  • 99 - эти люди умны от рождения. Учатся всегда неохотно, потому что знания даются им легко. Они наделены чувством юмора с ироничным оттенком, независимые.
  • 999 - очень умны. К учению вообще не прикладывают никаких усилий. Прекрасные собеседники.
  • 9999 - этим людям открывается истина. Если у них к тому же развита интуиция, то они гарантированы от провала в любом из своих начинаний. При всем этом они, как правило, довольно приятны, так как острый ум делает их грубыми, немилосердными и жестокими.

Итак, составив магический квадрат Пифагора и зная значение всех комбинаций цифр, входящих в его ячейки, вы сможете в достаточной мере оценить те качества вашей натуры, которыми наделила матушка - природа.

Латинские квадраты

Не смотря на то, что математиков интересовали в основном магические квадраты наибольшее применение в науке и технике нашли латинские квадраты.

Латинским квадратом называется квадрат nхn клеток, в которых написаны числа 1, 2,…, n, притом так, что в каждой строке и каждом столбце встречаются все эти числа по одному разу. На рис.3 изображены два таких квадрата 4х4. Они обладают интересной особенностью: если один квадрат наложить на другой, то все пары получившихся чисел оказываются различными. Такие пары латинских квадратов называются ортогональными.

Задачу отыскания ортогональных латинских квадратов впервые поставил Л. Эйлер, причём в такой занимательной формулировке: “ Среди 36 офицеров поровну уланов, драгунов, гусаров, кирасиров, кавалергардов и гренадеров и кроме того поровну генералов, полковников, майоров, капитанов, поручиков и подпоручиков, причем каждый род войск представлен офицерами всех шести рангов. Можно ли выстроить всех офицеров в каре 6 х 6 так, чтобы в любой колонне и любой шеренге встречались офицеры всех рангов?”

Эйлер не смог найти решения этой задачи. В 1901 г. было доказано, что такого решения не существует. В то же время Эйлер доказал, что ортогональные пары латинских квадратов существуют для всех нечетных значений n и для таких четных значений n, которые делятся на 4. Эйлер выдвинул гипотезу, что для остальных значений n, то есть если число n при делении на 4 даст в остатке 2, ортогональных квадратов не существует. В 1901 г. было доказано, что ортогональных квадратов 6 6 не существует, и это усиливало уверенность в справедливости гипотезы Эйлера. Однако в 1959 г. помощью ЭВМ были найдены сначала ортогональные квадраты 10х10, потом 14х14, 18х18, 22х22. А затем было показано, что для любого n , кроме 6, существуют ортогональные квадраты nхn.

Магические и латинские квадраты - близкие родственники. Пусть мы имеем два ортогональных квадрата. Заполним клетки нового квадрата тех же размеров следующим образом. Поставим туда число n(a - 1)+b, где а - число в такой клетке первого квадрата, а b - число в такой же клетке второго квадрата. Нетрудно понять, что в полученном квадрате суммы чисел в строках и столбцах (но не обязательно на диагоналях) будут одинаковы.

Теория латинских квадратов нашла многочисленные применения как в самой математике, так и в ее приложениях. Приведем такой пример. Пусть мы хотим испытать 4 сорта пшеницы на урожайность в данной местности, причем хотим учесть влияние степени разреженности посевов и влияние двух видов удобрений. Для того разобьем квадратный участок земли на 16 делянок (рис.4). Первый сорт пшеницы посадим на делянках, соответствующих нижней горизонтальной полосе, следующий сорт - на четырех делянках, соответствующих следующей полосе, и т. д. (на рисунке сорт обозначен цветом). При этом максимальная густота посевов пусть будет на тех делянках, которые соответствуют левому вертикальному столбцу рисунка, и уменьшается при переходе вправо (на рисунке этому соответствует уменьшение интенсивности цвета). Цифры же, стоящие в клетках рисунка, пусть означают:

первая - количество килограммов удобрения первого вида, вносимого на этот участок, а вторая - количество вносимого удобрения второго вида. Нетрудно понять, что при этом реализованы все возможные пары сочетаний как сорта и густоты посева, так и других компонентов: сорта и удобрений первого вида, удобрений первого и второго видов, густоты и удобрений второго вида.

Использование ортогональных латинских квадратов помогает учесть все возможные варианты в экспериментах в сельском хозяйстве, физике, химии, технике.

квадрат магический пифагор латинский

Заключение

В настоящем реферате рассмотрены вопросы, связанные с историей развития одного из вопросов математики, занимавшего умы очень многих великих людей, - магических квадратов. Несмотря на то, что собственно магические квадраты не нашли широкого применения в науке и технике, они подвигли на занятия математикой множество незаурядных людей и способствовали развитию других разделов математики (теории групп, определителей, матриц и т.д.).

Ближайшие родственники магических квадратов - латинские квадраты нашли многочисленные применения как в математике, так и в ее приложениях при постановке и обработке результатов экспериментов. В реферате приведен пример постановки такого эксперимента.

В реферате также рассмотрен вопрос о квадрате Пифагора, представляющем исторический интерес и, возможно, полезном для составления психологического портрета личности.

Список литературы

  • 1. Энциклопедический словарь юного математика. М., «Педагогика», 1989г.
  • 2. М. Гарднер «Путешествие во времени», М., «Мир», 1990г.
  • 3. Физкультура и спорт № 10, 1998г.