Где участвует атф. Молекула АТФ — что это и какова её роль в организме

Процесс фосфорилирования – реакция переноса фосфорильной группы от одного соединения к другому при участии фермента киназы. АТФ синтезируется путем окислительного и субстратного фосфорилирования. Окислительное фосфорилирование – синтез АТФ путем присоединения к АДФ неорганического фосфата с использованием энергии, освободившейся при окислении биоорганических веществ.

АДФ + ~Ф → АТФ

Субстратное фосфорилирование – непосредственная передача фосфорильной группы с макроэргической связью АДФ для синтеза АТФ.

Примеры субстратного фосфорилирования:

1. Промежуточным продуктом углеводного метаболизма является фосфоенолпировиноградная кислота, которая передает АДФ фосфорильную группу с высокоэнергетической связью:


Взаимодействие промежуточного продукта цикла Кребса – макроэргического сукцинил-Ко-А – с АДФ с образованием одной молекулы АТФ.

Рассмотрим три основных этапа освобождения энергии и синтеза АТФ в организме.

Первый этап (подготовительный) включает переваривание и всасывание. На этом этапе освобождается 0,1% энергии пищевых соединений.

Второй этап. После транспортировки мономеры (продукты распада биоорганических соединений) поступают в клетки, где подвергаются окислению. В результате окисления топливных молекул (аминокислоты, глюкоза, жиры) образуется соединение ацетил-Ко-А. В течение данного этапа освобождается около 30% энергии пищевых веществ.



Третий этап – цикл Кребса – представляет собой замкнутую систему биохимических окислительно-восстановительных реакций. Цикл назван по имени английского биохимика Ханса Кребса, который постулировал и экспериментально подтвердил основные реакции аэробного окисления. За проведенные исследования Кребс получил Нобелевскую премию (1953). Цикл имеет еще два названия:

Цикл трикарбоновых кислот, так как он включает реакции превращения трикарбоновых кислот (кислот, содержащих три карбоксильные группы);

Цикл лимонной кислоты, так как первой реакцией цикла является образование лимонной кислоты.

Цикл Кребса включает 10 реакций, четыре из которых окислительно-восстановительные. В ходе реакций освобождается 70% энергии.

Чрезвычайно велика биологическая роль этого цикла, поскольку это общий конечный пункт окислительного распада всех основных пищевых продуктов. Это главный механизм окисления в клетке, образно его называют метаболическим «котлом». В процессе окисления топливных молекул (углеводов, аминокислот, жирных кислот происходит обеспечение организма энергией в виде АТФ. Топливные молекулы вступают в цикл Кребса после превращения в ацетил-Ко-А.

Кроме того, цикл трикарбоновых кислот поставляет промежуточные продукты для процессов биосинтеза. Этот цикл происходит в матриксе митохондрий.

Рассмотрим реакции цикла Кребса:

Цикл начинается с конденсации четырехуглеродного компонента оксалоацетата и двухуглеродного компонента ацетил-Ко-А. Реакция катализируется цитратсинтазой и представляет собой альдольную конденсацию с последующим гидролизом. Промежуточным продуктом является цитрил-Ко-А, который гидролизуется на цитрат и КоА:


IV. Это первая окислительно-восстановительная реакция.
Реакция катализируется α-оксоглутаратдегидрогеназным комплексом, состоящим из трех ферментов:

VII.

В сукциниле имеется связь, богатая энергией. Расщепление тиоэфирной связи сукцинил-КоА сопряжено с фосфорилированием гуанозиндифосфата (ГДФ):

Сукцинил-КоА + ~ Ф +ГДФ Сукцинат + ГТФ +КоА

Фосфорильная группа ГТФ легко переносится на АДФ с образованием АТФ:

ГТФ + АДФ АТФ + ГДФ

Это единственная реакция цикла, являющаяся реакцией субстратного фосфорилирования.

VIII. Это третья окислительно-восстановительная реакция:


В цикле Кребса образуются углекислый газ, протоны, электроны. Четыре реакции цикла являются окислительно-восстановительными, катализируются ферментами – дегидрогеназами, содержащими коферменты НАД, ФАД. Коферменты захватывают образующиеся Н + и ē и передают их в дыхательную цепь (цепь биологического окисления). Элементы дыхательной цепи находятся на внутренней мембране митохондрий.

Дыхательная цепь – система окислительно-восстановительных реакций, в ходе которых происходит постепенный перенос Н + и ē к О 2 , который поступает в организм в результате дыхания. В дыхательной цепи происходит образование АТФ. Основные переносчики ē в цепи – железо- и медьсодержащие белки (цитохромы), кофермент Q (убихинон). В цепи находится 5 цитохромов (b 1 , с 1 , с, а, а 3).

Простетической группой цитохромов b 1 , с 1 , с является железосодержащий гем. Механизм действия данных цитохромов состоит в том, что в их составе имеется атом железа с переменной валентностью, который может находиться как в окисленном, так и в восстановленном состоянии в результате переноса ē и Н + .

Повышайте уровень АТФ для быстрого восстановления и роста

АТФ представляет собой источник внутриклеточной энергии, контролирующий почти все функции мышц и определяющий уровень силы и выносливости. Он также регулирует анаболическую ответную реакцию на тренинг, а также влияние большинства гормонов на клеточном уровне. Вполне можно предположить, что чем больше АТФ содержится в мышцах, тем они будут больше и мощнее.

Факт в том, что интенсивный тренинг бодибилдера исчерпывает запасы АТФ в мышцах. И это состояние опустошенности может длиться несколько дней, препятствуя росту мышц. В частности, перетренированность является результатом длительного нахождения организма в состоянии истощения запасов АТФ. Для того, чтобы восстановить уровень АТФ в мышцах, вы должны научиться эффективно использовать различные стимуляторы повышения уровня АТФ.

Уровень АТФ во время тренировки

Для мышечных сокращений используется энергия АТФ, содержащегося в мышечных клетках. Однако, при интенсивных сокращениях запас этого «горючего» быстро исчерпывается. Именно по этой причине вы не можете вечно продолжать вырабатывать такое же усилие. Чем тяжелее вы тренируетесь, тем больше АТФ вам требуется. Но чем больше становится отягощение, тем больше ваши клетки теряют способность воссоздавать АТФ. Вследствие этого, тяжелая нагрузка быстро «валит вас с ног», вызывая огромное разочарование, поскольку это лишает вас возможности выполнить последние, самые продуктивные, повторения. Именно тогда вы начинаете чувствовать сокращения мышц, ощущаете каждое волокно, но все они перестают работать из-за нехватки АТФ.

В действительности, уровень АТФ является одним из самых лимитирующих факторов в тренинге. Он сокращает количество стимулирующих рост повторений в каждом сете. Для того, чтобы возместить отсутствие интенсивности в конце сета, вы выполняете большее число сетов, что в результате дает значительный объем неэффективной работы с низкой интенсивностью.

В противоположность распространенному мнению, уровень АТФ после выполнения сета вовсе не нулевой. На самом деле, он очень далек от нуля. Медицинские исследования показывают, что уровень АТФ в мышцах снижается на 25% после 10 секунд максимальных мышечных сокращений (1). После 30 секунд выработки таких усилий уровень АТФ находится на отметке 50%. Поэтому вы все еще далеки до полного исчерпания запасов АТФ. Но даже небольшого снижения его уровня достаточно для того, чтобы не позволить мышцам сокращаться с такой мощностью, как вам бы хотелось. Конечно, запасы АТФ все больше и больше снижаются, когда вы выполняете более одного сета. Исследования показали, что 4-х минут отдыха было недостаточно для полного восстановления уровня АТФ в волокнах типа 2 после 30 секунд мышечных сокращений (2). Следовательно, когда вы начинаете второй сет, резерв АТФ в мышцах не оптимален. По мере того, как вы выполняете все больше и больше подходов, уровень АТФ становится все меньше.

Что происходит с АТФ после тренировки

После завершения тренировки резервы АТФ могут быть значительно сокращены. Когда вы отдыхаете, вы, возможно, ожидаете, что ваши мышцы получают возможность восстановиться. Ведь потребность в АТФ в это время снижается, а выработка увеличивается. Однако, помните, что в начале периода восстановления уровень АТФ низкий, поэтому его возвращение к нормальному займет некоторое время. Какое? Как это ни удивительно, для полного восполнения запасов АТФ потребуется от 24 до 72 часов.

Если вы находитесь в состоянии перетренированности, уровень АТФ не вернется к нормальному, базовому уровню. Хотя, к сожалению, после тренировки уровень АТФ несколько сокращен, он все еще остается достаточно высоким. Для этого есть несколько причин, среди них следующие:

1) Когда вы тренируетесь, в мышечных клетках накапливается натрий. После этого они должны избавиться от натрия с помощью механизма, называемого Na-K-АТФ-азным насосом. Как свидетельствует из названия, этот механизм использует АТФ в качестве источника энергии.

2) Если у вас болят мышцы, значит в них скопилось большое количество кальция. Они будут стараться содержащийся в них кальций вернуть в его естественные хранилища, но для этого тоже требуется определенный запас АТФ.

3) Другой интересный аспект касается образования глютамина. После тренировки потребность организма в глютамине очень сильно возрастает. Для того, чтобы справиться с возросшей потребностью в глютамине, организм начинает вырабатывать больше глютамина из других аминокислот, таких как аминокислоты с разветвленными цепями. Возникает состояние «перетягивания каната». По мере увеличения использования глютамина, увеличиваются и усилия организма по производству нового глютамина. Производство глютамина очень затратно с энергетической точки зрения - имеется в виду АТФ. Происходит оно в основном в мышцах, но уровень АТФ в мышцах после тренировки понижен, что препятствует выработке глютамина. Через некоторый промежуток времени выработка его уже не покрывает увеличившуюся потребность, что приводит к достоверному сокращению уровня глютамина после тренировки. С другой стороны, чтобы сделать это сокращение минимальным, организм старается увеличить скорость синтеза глютамина, используя еще больше АТФ. Следовательно, потребление АТФ мышцами остается высоким в течение длительного периода времени после тренировки, и это является причиной слишком длительного восстановления мышц.

АТФ и диета

Процесс тренинга и мышечного развития довольно труден даже тогда, когда вы нормально питаетесь. Но ведь культуристам время от времени приходится соблюдать низкоуглеводную диету. Вы можете себе представить, как сокращение приема пищи влияет на энергетический уровень в клетке. Во время длительной ограничительной диеты энергетическое равновесие в мышцах нарушается, что еще более усложняет поддержание нормального уровня АТФ. Это приводит к снижению силы при тренинге и длительному восстановлению после тренировки.

Функции АТФ

Помимо основной функции обеспечения энергией мышечных сокращений и контроля содержания электролитов в мышцах, АТФ выполняет множество других функций в мышцах. Например, он контролирует скорость синтеза протеина. Подобно тому, как строительство здания требует наличия исходных материалов и определенного расхода энергии, так и строительство мышечных тканей. Материалом служат аминокислоты, а источником энергии - АТФ. Анаболизм является одним из самых энергопотребляющих процессов, которые происходят внутри мышц.

Он потребляет столько АТФ, что при сокращении этого вещества на 30%, большая часть анаболических реакций останавливается. Таким образом, колебания уровня АТФ очень сильно сказываются на анаболическом процессе.

Этим объясняется тот факт, что во время тренировки мышцы не растут. Когда человек тренируется, уровень АТФ у него слишком низок. И если вызвать анаболический процесс именно в этот момент, то он еще больше бы исчерпал запас АТФ, снижая вашу способность сокращать мышцы. Чем раньше уровень АТФ вернется к нормальному, тем раньше начнется процесс синтеза протеина. Таким образом, несмотря на то, что очень важно повышать уровень АТФ во время тренировки, даже еще важнее делать это после тренировки, чтобы мышцы росли. АТФ также необходим анаболическим гормонам, чтобы они могли «творить чудеса». Как тестостерону, так и инсулину требуется АТФ для нормального функционирования.

Как это ни парадоксально, уровень АТФ контролирует и темп катаболизма. Основные протеолитические пути требуют затрат энергии для того, чтобы разрушать мышечную ткань. Хотя вы можете предположить, что послетренировочное сокращение уровня АТФ может спасти мышцы от катаболизма, к сожалению, это не так. Когда уровень АТФ в мышцах достигает нижнего порога, запускаются другие катаболические механизмы, не зависящие от АТФ. Содержащийся в клетках кальций начинает выводиться из клеток, вызывая основные нарушения. Более выигрышным вариантом будет усиление и анаболического, и катаболического процессов, чем сильный катаболический процесс и слабый анаболический. Следовательно, чем больше АТФ - тем лучше.

Как повысить уровень АТФ

Как культурист, вы обладаете огромным арсеналом мощных средств для повышения уровня АТФ. В данной статье я расскажу об использовании креатина, прогормонов и рибозы. Не буду останавливаться на углеводах, поскольку о них, как об источнике энергии, и так уже слишком много было написано. Глютамин и аминокислоты с разветвленными цепями тоже оказывают небольшое влияние на выработку АТФ, но в этот раз я не буду останавливаться на них подробно. Важно, чтобы вы поняли, что все эти стимуляторы характеризуются разновременностью срабатывания, поэтому являются лишь вспомогательными.

Самым быстродействующим стимулятором является D-рибоза. Молекула АТФ рождается при взаимодействии одной молекулы аденина, трех фосфатных групп и одной молекулы рибозы. Таким образом, рибоза является необходимым сырьем для синтеза АТФ. Рибоза также контролирует активность фермента 5-фосфорибозил-1-пирофосфат, необходимого для ресинтеза АТФ.

Я рекомендую употреблять по крайней мере 4 грамма рибозы за 45 минут до тренировки. У вас не только сразу же повысится уровень силы, но рибоза также предотвращает влияющее на результативность нервное утомление, когда вы добавляете повторения в самых тяжелых сетах.

Однако, рибоза действует не только как стимулятор выработки АТФ. Исследования ученых показали, что она оказывает эффективное влияние на увеличение уровня АТФ и на увеличение уровня уридинтрифосфата, являющегося еще одним, хотя и менее известным, источником клеточной энергии. Уридинтрифосфат имеет наиболее важное значение для медленносокращающихся волокон. Исследования показывают, что он оказывает сильное анаболическое влияние на мышцы. Он также помогает им избавиться от нашествий натрия, помогая калию проникнуть внутрь мышечных клеток, что, в свою очередь, щадит запасы АТФ.

Я считаю креатин умеренным стимулятором АТФ, а стимуляторами АТФ самого длительного действия являются прогормоны. Я сомневаюсь в том, что креатин способен оказывать стимулирующий эффект на выработку АТФ у тех, кто ведет малоподвижный образ жизни. Однако, как уже рассказывалось выше, интенсивная физическая нагрузка снижает уровень АТФ на длительное время. В этом случае креатин может обеспечить необходимый исходный материал для ресинтеза АТФ, благодаря его трансформации в фосфокреатин внутри мышц. Проведенный европейскими учеными эксперимент показал, что при дополнительном употреблении спортсменами высокого уровня тренированности креатина на протяжении пяти дней в количестве 21 г в день, вместе с употреблением 252 г углеводов, уровень АТФ в мышцах увеличился аж на 9%, а при употреблении предшественника АТФ фосфокреатина - на 11% (3).

Что касается прогормонов, проведенные на животных исследования показали, что уровень мужских гормонов очень сильно влияет на уровень АТФ в мышцах. При кастрировании крыс уровень АТФ в мышцах у них был понижен (4). Когда крысам вводили тестостерон, уровень АТФ восстанавливался до нормальной отметки. Результаты этого исследования доказали важность употребления стимуляторов выработки тестостерона, особенно в период после тренировки, когда уровень тестостерона снижается даже просто от употребления углеводов. Вы можете употреблять интракринный стимулятор выработки тестостерона, такой как андростенедион, и эндокринные стимуляторы, такие как предшественники нандролона. Таким образом, вы можете естественным образом отрегулировать снижающийся уровень тестостерона в крови, замещая его нандролоном, а также повысить при этом уровень тестостерона в мышцах с помощью андростенедиона.
Рибоза, креатин и прогормоны являются эффективными стимуляторами выработки АТФ. Комбинированный их прием повысит ваш силовой уровень во время тренинга с отягощениями, улучшая при этом мышечное восстановление и рост после тренировки. Поскольку их влияние по-разному распределяется по времени, и у них разный способ действия, они приносят оптимальные результаты, работая в синергии.

Энергетика мышечной деятельности

Как уже указывалось, обе фазы мышечной деятельности - сокращение и расслабление - протекают при обязательном использовании энергии, которая выделяется при гидролизе АТФ.

Однако запасы АТФ в мышечных клетках незначительны (в покое концентрация АТФ в мышцах около 5 ммоль/л), и их достаточно для мышечной работы в течение 1-2 с. Поэтому для обеспечения более продолжительной мышечной деятельности в мышцах должно происходить пополнение запасов АТФ. Образование АТФ в мышечных клетках непосредственно во время физической работы называется ресинтезом АТФ и идет с потреблением энергии.

Таким образом, при функционировании мышц в них одновременно протекают два процесса: гидролиз АТФ, дающий необходимую энергию для сокращения и расслабления, и ресинтез АТФ, восполняющий потери этого вещества. Если для обеспечения мышечного сокращения и расслабления используется только химическая энергия АТФ, то для ресинтеза АТФ пригодна химическая энергия самых разнообразных соединений: углеводов, жиров, аминокислот и креатинфосфата.

Строение и биологическая роль АТФ

Аденозинтрифосфат (АТФ) является нуклеотидом. Молекула АТФ (аденозинтрифосфорной кислоты) состоит из азотистого основания аденина, пятиуглеродного сахара рибозы и трех остатков фосфорной кислоты, соединенных между собой макроэргической связью. При ее гидролизе высвобождается большое количество энергии. АТФ является основным макроэргом клетки, аккумулятором энергии в виде энергии высокоэнергетических химических связей.

В физиологических условиях, т. е. при тех условиях, которые имеются в живой клетке, расщепление моля АТФ (506 г) сопровождается выделением 12 ккал, или 50 кДж энергии.

Пути образования АТФ

Аэробное окисление (тканевое дыхание)

Синонимы: окислительное фосфорилирование, дыхательное фосфорилирование, аэробное фосфорилирование.

Протекает этот путь в митохондриях.

Цикл трикарбоновых кислот впервые был открыт английским биохимиком Г. Кребсом (рис. 4).

Первая реакция катализируется ферментом цитрат-синтазой, при этом ацетильная группа ацетил-КоА конденсируется с оксалоацетатом, в результате чего образуется лимонная кислота. По-видимому, в данной реакции в качестве промежуточного продукта образуется связанный с ферментом цитрил-КоА. Затем последний самопроизвольно и необратимо гидролизуется с образованием цитрата и НS-КоА.

В результате второй реакции образовавшаяся лимонная кислота подвергается дегидратированию с образованием цис-аконитовой кислоты, которая, присоединяя молекулу воды, переходит в изолимонную кислоту (изоцитрат). Катализирует эти обратимые реакции гидратации- дегидратации фермент аконитатгидратаза (аконитаза). В результате происходит взаимоперемещение Н и ОН в молекуле цитрата.

Рис. 4. Цикл трикарбоновых кислот (цикл Кребса)

Третья реакция, по-видимому, лимитирует скорость цикла Кребса. Изолимонная кислота дегидрируется в присутствии НАД-зависимой изоцитратдегидрогеназы. В ходе изоцитратдегидрогеназной реакции изолимонная кислота одновременно декарбоксилируется. НАД-зависимая изоцитратдегидрогеназа является аллостерическим ферментом, которому в качестве специфического активатора необходим АДФ. Кроме того, фермент для проявления своей активности нуждается в ионах или .

Во время четвертой реакции происходит окислительное декарбоксилирование α-кетоглутаровой кислоты с образованием высокоэнергетического соединения сукцинил-КоА. По механизму эта реакция схожа с реакцией окислительного декарбоксилирования пирувата до ацетил-КоА; α-кетоглутаратдегидрогеназный комплекс напоминает по своей структуре пируватдегидрогеназный комплекс. Как в одном, так и в другом случае в реакции принимают участие 5 коферментов: ТПФ, амид липоевой кислоты, НS-КоА, ФАД и НАД+.

Пятая реакция катализируется ферментом сукцинил-КоА- синтетазой. В ходе этой реакции сукцинил-КоА при участии ГТФ и неорганического фосфата превращается в янтарную кислоту (сукцинат). Одновременно происходит образование высокоэргической фосфатной связи ГТФ за счет высокоэргической тиоэфирной связи сукцинил-КоА.

В результате шестой реакции сукцинат дегидрируется в фумаровую кислоту. Окисление сукцината катализируется сукцинатдегидрогеназой,

в молекуле которой с белком прочно (ковалентно) связан кофермент ФАД. В свою очередь, сукцинатдегидрогеназа прочно связана с внутренней митохондриальной мембраной.

Седьмая реакция осуществляется под влиянием фермента фумаратгидратазы (фумаразы). Образовавшаяся при этом фумаровая кислота гидратируется, продуктом реакции является яблочная кислота (малат).

Наконец, в ходе восьмой реакции цикла трикарбоновых кислот под влиянием митохондриальной НАД-зависимой малатдегидрогеназы происходит окисление Ь-малата в оксалоацетат.

За один оборот цикла при окислении одной молекулы ацетил-КоА в цикле Кребса и системе окислительного фосфорилирования может образоваться 12 молекул АТФ.

Анаэробное окисление

Синонимы: субстратное фосфорилирование, анаэробный синтез АТФ. Идет в цитоплазме, отщепленный водород присоединяется к какому-то другому веществу. В зависимости от субстрата выделяют два пути анаэробного ресинтеза АТФ: креатинфосфатный (креатинкиназный, алактатный) и гликолитический (гликолиз, лактатный). В нервом случае субстратом выступает креатинфосфат, во втором - глюкоза.

Эти пути протекают без участия кислорода.

Продолжение. См. № 11, 12, 13, 14, 15, 16/2005

Уроки биологии в классах естественно-научного профиля

Расширенное планирование, 10 класс

Урок 19. Химическое строение и биологическая роль АТФ

Оборудование: таблицы по общей биологии, схема строения молекулы АТФ, схема взаимосвязи пластического и энергетического обменов.

I. Проверка знаний

Проведение биологического диктанта «Органические соединения живой материи»

Учитель читает тезисы под номерами, учащиеся записывают в тетрадь номера тех тезисов, которые подходят по содержанию их варианту.

Вариант 1 – белки.
Вариант 2 – углеводы.
Вариант 3 – липиды.
Вариант 4 – нуклеиновые кислоты.

1. В чистом виде состоят только из атомов С, Н, О.

2. Кроме атомов С, Н, О содержат атомы N и обычно S.

3. Кроме атомов С, Н, О содержат атомы N и Р.

4. Обладают относительно небольшой молекулярной массой.

5. Молекулярная масса может быть от тысяч до нескольких десятков и сотен тысяч дальтон.

6. Наиболее крупные органические соединения с молекулярной массой до нескольких десятков и сотен миллионов дальтон.

7. Обладают различными молекулярными массами – от очень небольшой до весьма высокой, в зависимости от того, является ли вещество мономером или полимером.

8. Состоят из моносахаридов.

9. Состоят из аминокислот.

10. Состоят из нуклеотидов.

11. Являются сложными эфирами высших жирных кислот.

12. Основная структурная единица: «азотистое основание–пентоза–остаток фосфорной кислоты».

13. Основная структурная единица: «аминокислот».

14. Основная структурная единица: «моносахарид».

15. Основная структурная единица: «глицерин–жирная кислота».

16. Молекулы полимеров построены из одинаковых мономеров.

17. Молекулы полимеров построены из сходных, но не вполне одинаковых мономеров.

18. Не являются полимерами.

19. Выполняют почти исключительно энергетическую, строительную и запасающую функции, в некоторых случаях – защитную.

20. Помимо энергетической и строительной выполняют каталитическую, сигнальную, транспортную, двигательную и защитную функции;

21. Осуществляют хранение и передачу наследственных свойств клетки и организма.

Вариант 1 – 2; 5; 9; 13; 17; 20.
Вариант 2 – 1; 7; 8; 14; 16; 19.
Вариант 3 – 1; 4; 11; 15; 18; 19.
Вариант 4 – 3; 6; 10; 12; 17; 21.

II. Изучение нового материала

1. Строение аденозинтрифосфорной кислоты

Кроме белков, нуклеиновых кислот, жиров и углеводов в живом веществе синтезируется большое количество других органических соединений. Среди них важнуую роль в биоэнергетике клетки играет аденозинтрифосфорная кислота (АТФ). АТФ содержится во всех клетках растений и животных. В клетках чаще всего аденозинтрифосфорная кислота присутствует в виде солей, называемых аденозинтрифосфатами . Количество АТФ колеблется и в среднем составляет 0,04% (в клетке в среднем находится около 1 млрд молекул АТФ). Наибольшее количество АТФ содержится в скелетных мышцах (0,2–0,5%).

Молекула АТФ состоит из азотистого основания – аденина, пентозы – рибозы и трех остатков фосфорной кислоты, т.е. АТФ – особый адениловый нуклеотид. В отличие от других нуклеотидов АТФ содержит не один, а три остатка фосфорной кислоты. АТФ относится к макроэргическим веществам – веществам, содержащим в своих связях большое количество энергии.

Пространственная модель (А) и структурная формула (Б) молекулы АТФ

Из состава АТФ под действием ферментов АТФаз отщепляется остаток фосфорной кислоты. АТФ имеет устойчивую тенденцию к отделению своей концевой фосфатной группы:

АТФ 4– + Н 2 О ––> АДФ 3– + 30,5 кДж + Фн,

т.к. это приводит к исчезновению энергетически невыгодного электростатического отталкивания между соседними отрицательными зарядами. Образовавшийся фосфат стабилизируется за счет образования энергетически выгодных водородных связей с водой. Распределение заряда в системе АДФ + Фн становится более устойчивым, чем в АТФ. В результате этой реакции высвобождается 30,5 кДж (при разрыве обычной ковалентной связи высвобождается 12 кДж).

Для того, чтобы подчеркнуть высокую энергетическую «стоимость» фосфорно-кислородной связи в АТФ, ее принято обозначать знаком ~ и называть макроэнергетической связью. При отщеплении одной молекулы фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорная кислота), а если отщепляются две молекулы фосфорной кислоты, то АТФ переходит в АМФ (аденозинмонофосфорная кислота). Отщепление третьего фосфата сопровождается выделением всего 13,8 кДж, так что собственно макроэргических связей в молекуле АТФ только две.

2. Образование АТФ в клетке

Запас АТФ в клетке невелик. Например, в мышце запасов АТФ хватает на 20–30 сокращений. Но ведь мышца способна работать часами и производить тысячи сокращений. Поэтому наряду с распадом АТФ до АДФ в клетке должен непрерывно идти обратный синтез. Существует несколько путей синтеза АТФ в клетках. Познакомимся с ними.

1. Анаэробное фосфорилирование. Фосфорилированием называют процесс синтеза АТФ из АДФ и низкомолекулярного фосфата (Фн). В данном случае речь идет о бескислородных процессах окисления органических веществ (например, гликолиз – процесс бескислородного окисления глюкозы до пировиноградной кислоты). Примерно 40% выделяемой в ходе этих процессов энергии (около 200 кДж/моль глюкозы), расходуется на синтез АТФ, а остальная часть рассеивается в виде тепла:

С 6 Н 12 О 6 + 2АДФ + 2Фн ––> 2С 3 Н 4 O 3 + 2АТФ + 4Н.

2. Окислительное фосфорилирование – это процесс синтеза АТФ за счет энергии окисления органических веществ кислородом. Этот процесс был открыт в начале 1930-х гг. XX в. В.А. Энгельгардтом. Кислородные процессы окисления органических веществ протекают в митохондриях. Примерно 55% выделяющейся при этом энергии (около 2600 кДж/моль глюкозы) превращается в энергию химических связей АТФ, а 45% рассеивается в виде тепла.

Окислительное фосфорилирование значительно эффективнее анаэробных синтезов: если в процессе гликолиза при распаде молекулы глюкозы синтезируется всего 2 молекулы АТФ, то в ходе окислительного фосфорилирования образуется 36 молекул АТФ.

3. Фотофосфорилирование – процесс синтеза АТФ за счет энергии солнечного света. Этот путь синтеза АТФ характерен только для клеток, способных к фотосинтезу (зеленые растения, цианобактерии). Энергия квантов солнечного света используется фотосинтетиками в световую фазу фотосинтеза для синтеза АТФ.

3. Биологическое значение АТФ

АТФ находится в центре обменных процессов в клетке, являясь связующим звеном между реакциями биологического синтеза и распада. Роль АТФ в клетке можно сравнить с ролью аккумулятора, так как в ходе гидролиза АТФ выделяется энергия, необходимая для различных процессов жизнедеятельности («разрядка»), а в процессе фосфорилирования («зарядка») АТФ вновь аккумулирует в себе энергию.

За счет выделяющейся при гидролизе АТФ энергии происходят почти все процессы жизнедеятельности в клетке и организме: передача нервных импульсов, биосинтез веществ, мышечные сокращения, транспорт веществ и др.

III. Закрепление знаний

Решение биологических задач

Задача 1. При быстром беге мы часто дышим, происходит усиленное потоотделение. Объясните эти явления.

Задача 2. Почему на морозе замерзающие люди начинают притопывать и подпрыгивать?

Задача 3. В известном произведении И.Ильфа и Е.Петрова «Двенадцать стульев» среди многих полезных советов можно найти и такой: «Дышите глубже, вы взволнованы». Попробуйте обосновать этот совет с точки зрения происходящих в организме энергетических процессов.

IV. Домашнее задание

Начать подготовку к зачету и контрольной работе (продиктовать вопросы зачета – см. урок 21).

Урок 20. Обобщение знаний по разделу «Химическая организация жизни»

Оборудование: таблицы по общей биологии.

I. Обобщение знаний раздела

Работа учащихся с вопросами (индивидуально) с последующими проверкой и обсуждением

1. Приведите примеры органических соединений, в состав которых входят углерод, сера, фосфор, азот, железо, марганец.

2. Как по ионному составу можно отличить живую клетку от мертвой?

3. Какие вещества находятся в клетке в нерастворенном виде? В какие органы и ткани они входят?

4. Приведите примеры макроэлементов, входящих в активные центры ферментов.

5. Какие гормоны содержат микроэлементы?

6. Какова роль галогенов в организме человека?

7. Чем белки отличаются от искусственных полимеров?

8. Чем отличаются пептиды от белков?

9. Как называется белок, входящий в состав гемоглобина? Из скольких субъединиц он состоит?

10. Что такое рибонуклеаза? Сколько аминокислот входит в ее состав? Когда она была синтезирована искусственно?

11. Почему скорость химических реакций без ферментов мала?

12. Какие вещества транспортируются белками через клеточную мембрану?

13. Чем отличаются антитела от антигенов? Содержат ли вакцины антитела?

14. На какие вещества распадаются белки в организме? Сколько энергии выделяется при этом? Где и как обезвреживается аммиак?

15. Приведите пример пептидных гормонов: как они участвуют в регуляции клеточного метаболизма?

16. Какова структура сахара, с которым мы пьем чай? Какие еще три синонима этого вещества вы знаете?

17. Почему жир в молоке не собирается на поверхности, а находится в виде суспензии?

18. Какова масса ДНК в ядре соматической и половой клеток?

19. Какое количество АТФ используется человеком в сутки?

20. Из каких белков люди изготавливают одежду?

Первичная структура панкреатической рибонуклеазы (124 аминокислоты)

II. Домашнее задание.

Продолжить подготовку к зачету и контрольной работе по разделу «Химическая организация жизни».

Урок 21. Зачетный урок по разделу «Химическая организация жизни»

I. Проведение устного зачета по вопросам

1. Элементарный состав клетки.

2. Характеристика органогенных элементов.

3. Структура молекулы воды. Водородная связь и ее значение в «химии» жизни.

4. Свойства и биологические функции воды.

5. Гидрофильные и гидрофобные вещества.

6. Катионы и их биологическое значение.

7. Анионы и их биологическое значение.

8. Полимеры. Биологические полимеры. Отличия периодических и непериодических полимеров.

9. Свойства липидов, их биологические функции.

10. Группы углеводов, выделяемые по особенностям строения.

11. Биологические функции углеводов.

12. Элементарный состав белков. Аминокислоты. Образование пептидов.

13. Первичная, вторичная, третичная и четвертичная структуры белков.

14. Биологические функция белков.

15. Отличия ферментов от небиологических катализаторов.

16. Строение ферментов. Коферменты.

17. Механизм действия ферментов.

18. Нуклеиновые кислоты. Нуклеотиды и их строение. Образование полинуклеотидов.

19. Правила Э.Чаргаффа. Принцип комплементарности.

20. Образование двухцепочечной молекулы ДНК и ее спирализация.

21. Классы клеточной РНК и их функции.

22. Отличия ДНК и РНК.

23. Репликация ДНК. Транскрипция.

24. Строение и биологическая роль АТФ.

25. Образование АТФ в клетке.

II. Домашнее задание

Продолжить подготовку к контрольной работе по разделу «Химическая организация жизни».

Урок 22. Контрольный урок по разделу «Химическая организация жизни»

I. Проведение письменной контрольной работы

Вариант 1

1. Имеются три вида аминокислот – А, В, С. Сколько вариантов полипептидных цепей, состоящих из пяти аминокислот, можно построить. Укажите эти варианты. Будут ли эти полипептиды обладать одинаковыми свойствами? Почему?

2. Все живое в основном состоит из соединений углерода, а аналог углерода – кремний, содержание которого в земной коре в 300 раз больше, чем углерода, встречается лишь в очень немногих организмах. Объясните этот факт с точки зрения строения и свойств атомов этих элементов.

3. В одну клетку ввели молекулы АТФ, меченные радиоактивным 32Р по последнему, третьему остатку фосфорной кислоты, а в другую – молекулы АТФ, меченные 32Р по первому, ближайшему к рибозе остатку. Через 5 минут в обеих клетках померили содержание неорганического фосфат-иона, меченного 32Р. Где оно окажется значительно выше?

4. Исследования показали, что 34% общего числа нуклеотидов данной иРНК приходится на гуанин, 18% – на урацил, 28% – на цитозин и 20% – на аденин. Определите процентный состав азотистых оснований двухцепочечной ДНК, слепком с которой является указанная иРНК.

Вариант 2

1. Жиры составляют «первый резерв» в энергетическом обмене и используются, когда исчерпан резерв углеводов. Однако в скелетных мышцах при наличии глюкозы и жирных кислот в большей степени используются последние. Белки же в качестве источника энергии всегда используются лишь в крайнем случае, при голодании организма. Объясните эти факты.

2. Ионы тяжелых металлов (ртути, свинца и др.) и мышьяка легко связываются сульфидными группировками белков. Зная свойства сульфидов этих металлов, объясните, что произойдет с белком при соединении с этими металлами. Почему тяжелые металлы являются ядами для организма?

3. В реакции окисления вещества А в вещество В освобождается 60 кДж энергии. Сколько молекул АТФ может быть максимально синтезировано в этой реакции? Как будет израсходована остальная энергия?

4. Исследования показали, что 27% общего числа нуклеотидов данной иРНК приходится на гуанин, 15% – на урацил, 18% – на цитозин и 40% – на аденин. Определите процентный состав азотистых оснований двухцепочечной ДНК, слепком с которой является указанная иРНК.

Продолжение следует

В клетках всех организмов имеются молекулы АТФ — аденозинтрифосфорной кислоты. АТФ — универсальное вещество клетки, молекула которого имеет богатые энергией связи. Молекула АТФ — это один своеобразный нуклеотид, который, как и другие нуклеотиды, состоит из трех компонентов: азотистого основания — аденина, углевода — рибозы, но вместо одного содержит три остатка молекул фосфорной кислоты (рис. 12). Связи, обозначенные на рисунке значком, — богаты энергией и называются макроэргическими. Каждая молекула АТФ содержит две макроэргические связи.

При разрыве макроэргической связи и отщеплении с помощью ферментов одной молекулы фосфорной кислоты освобождается 40 кДж/моль энергии, а АТФ при этом превращается в АДФ — аденозиндифосфорную кислоту. При отщеплении еще одной молекулы фосфорной кислоты освобождается еще 40 кДж/моль; образуется АМФ — аденозинмонофосфорная кислота. Эти реакции обратимы, то есть АМФ может пре вращаться в АДФ, АДФ — в АТФ.

Молекулы АТФ не только расщепляются, но и синтезируются, по этому их содержание в клетке относительно постоянно. Значение АТФ в жизни клетки огромно. Эти молекулы играют ведущую роль в энергетическом обмене, необходимом для обеспечения жизнедеятельности клетки и организма в целом.

Молекула РНК, как правило, одиночная цепь, состоящая из четырех типов нуклеотидов — А, У, Г, Ц. Известны три основных вида РНК: иРНК, рРНК, тРНК. Содержание молекул РНК в клетке непостоянно, они участвуют в биосинтезе белка. АТФ — универсальное энергетическое вещество клетки, в котором имеются богатые энергией связи. АТФ играет центральную роль в обмене энергии в клетке. РНК и АТФ содержатся как в ядре, так и в цитоплазме клетки.

Любой-клетке, как и всякой живой системе, присуща способность сохранять свой состав и все свои свойства на относительно постоянном уровне. Так, например, содержание АТФ в клетках составляет около 0,04%, и эта величина стойко удерживается, несмотря на то что АТФ постоянно расходуется в клетке в процессе жизнедеятельности. Другой пример: реакция клеточного содержимого слабощелочная, и эта реакция устойчиво удерживается, несмотря на то что в процессе обмена веществ постоянно образуются кислоты и основания. Стойко удерживается на определенном уровне не только химический состав клетки, но и другие ее свойства. Высокую устойчивость живых систем нельзя объяснить свойствами материалов, из которых они построены, так как белки, жиры и углеводы обладают незначительной устойчивостью. Устойчивость живых систем активна, она обусловлена сложными процессами координации и регуляции.

Рассмотрим, например, каким образом поддерживается постоянство содержания АТФ в клетке. Как мы знаем, АТФ расходуется клеткой при осуществлении ею какой-либо деятельности. Синтез же АТФ происходит в результате процессов без кислородного и кислородного расщепления глюкозы. Очевидно, что постоянство содержания АТФ достигается благодаря точному уравновешиванию обоих процессов - расхода АТФ и ее синтеза: как только содержание АТФ в клетке снизится, тотчас же включаются процессы без кислородного и кислородного расщепления глюкозы, в ходе которых АТФ синтезируется и содержание АТФ в клетке повышается. Когда уровень АТФ достигнет нормы, синтез АТФ притормаживается.

Включение и выключение процессов, обеспечивающих поддержание нормального состава клетки, происходит в ней автоматически. Такая регуляция называется саморегуляцией или авторегуляцией.

Основой регуляции деятельности клетки являются процессы информации, т. е. процессы, в которых связь между отдельными звеньями системы осуществляется с помощью сигналов. Сигналом служит изменение, возникающее в каком-нибудь звене системы. В ответ на сигнал запускается процесс, в результате которого возникшее изменение устраняется. Когда нормальное состояние системы восстановлено - это служит новым сигналом для выключения процесса.

Каким же образом работает сигнальная система клетки, как она обеспечивает процессы авторегуляции в ней?

Прием сигналов внутри клетки производится ее ферментами. Ферменты, как и большинство белков, обладают неустойчивой структурой. Под влиянием ряда факторов, в том числе многих химических агентов, структура фермента нарушается и каталитическая активность его утрачивается. Это изменение, как правило, обратимо, т. е. после устранения действующего фактора структура фермента возвращается к норме и его каталитическая функция восстанавливается.

Механизм авторегуляции клетки основан на том, что вещество, содержание которого регулируется, способно к специфическому взаимодействию с порождающим его ферментом. В результате этого взаимодействия структура фермента деформируется и каталитическая активность его утрачивается.

Механизм авторегуляции клетки работает следующим образом. Мы уже знаем, что химические вещества, вырабатываемые в клетке, как правило, возникают в результате нескольких последовательных ферментативных реакций. Вспомните без кислородный и кислородный процессы расщепления глюкозы. Каждый из этих процессов представляет длинный ряд - не менее десятка последовательно протекающих реакций. Вполне очевидно, что для регуляции таких многочленных процессов достаточно выключения какого-либо одного звена. Достаточно выключить хотя бы одну реакцию - и остановится вся линия. Именно этим путем и осуществляется регуляция содержания АТФ в клетке. Пока клетка находится в покое, содержание АТФ в ней около 0,04%. При такой высокой концентрации АТФ она реагирует с одним из ферментов без кислородного процесса расщепления глюкозы. В результате этой реакции все молекулы данного фермента лишены активности и конвейерные линии без кислородного и кислородного процессов бездействуют. Если благодаря какой-либо деятельности клетки концентрация АТФ в ней снижается, тогда структура и функция фермента восстанавливаются и без кислородный и кислородный процессы запускаются. В результате происходит выработка АТФ, концентрация ее увеличивается. Когда она достигнет нормы (0,04%), конвейер без кислородного и кислородного процессов автоматически выключается.

2241-2250

2241. Географическая изоляция приводит к видообразованию, так как в популяциях исходного вида наблюдается
А) дивергенция
Б) конвергенция
В) ароморфоз
Г) дегенерация

2242. К невозобновимым природным ресурсам биосферы относят
А) известковые отложения
Б) тропические леса
В) песок и глину
Г) каменный уголь

2243. Какова вероятность проявления рецессивного признака в фенотипе у потомства первого поколения, если оба родителя имеют генотип Aa?
А) 0%
Б) 25%
В) 50%
Г) 75%

Конспект

2244. Богатые энергией связи между остатками фосфорной кислоты имеются в молекуле
А) белка
Б) АТФ
В) иРНК
Г) ДНК

2245. По какому признаку изображенное на рисунке животное относят к классу насекомых?
А) три пары ходильных ног
Б) два простых глаза
В) одна пара прозрачных крыльев
Г) расчленение тела на голову и брюшко

Конспект

2246. Зигота, в отличие от гаметы, образуется в результате
А) оплодотворения
Б) партеногенеза
В) сперматогенеза
Г) I деления мейоза

2247. Бесплодные гибриды у растений образуются в результате
А) внутривидового скрещивания
Б) полиплоидизации
В) отдаленной гибридизации
Г) анализирующего скрещивания

Какое количество АТФ содержится в организме?

2249. У резус-отрицательных людей, по сравнению с резус-положительными, эритроциты крови отличаются по составу
А) липидов
Б) углеводов
В) минеральных веществ
Г) белков

2250. При разрушении клеток височной доли коры больших полушарий человек
А) получает искаженное представление о форме предметов
Б) не различает силу и высоту звука
В) теряет координацию движений
Г) не различает зрительные сигналы

© Д.В.Поздняков, 2009-2018


Adblock detector

1. Какие слова пропущены в предложении и заменены буквами (а-г)?

"В состав молекулы АТФ входит азотистое основание (а), пятиуглеродный моносахарид (б) и (в) остатка (г) кислоты."

Буквами заменены следующие слова: а – аденин, б – рибоза, в – три, г – фосфорной.

2. Сравните строение АТФ и строение нуклеотида. Выявите сходство и различия.

Фактически АТФ представляет собой производное аденилового нуклеотида РНК (аденозинмонофосфата, или АМФ). В состав молекул обоих веществ входит азотистое основание аденин и пятиуглеродный сахар рибоза. Различия связаны с тем, что в составе аденилового нуклеотида РНК (как и в составе любого другого нуклеотида) есть лишь один остаток фосфорной кислоты, и отсутствуют макроэргические (высокоэнергетические) связи. Молекула АТФ содержит три остатка фосфорной кислоты, между которыми имеются две макроэргические связи, поэтому АТФ может выполнять функцию аккумулятора и переносчика энергии.

3. Что представляет собой процесс гидролиза АТФ?

АТФ: энергетическая валюта

Синтеза АТФ? В чём заключается биологическая роль АТФ?

В процессе гидролиза происходит отщепление от молекулы АТФ одного остатка фосфорной кислоты (дефосфорилирование). При этом разрывается макроэргическая связь, высвобождается 40 кДж/моль энергии и АТФ превращается в АДФ (аденозиндифосфорную кислоту):

АТФ + Н2О → АДФ + Н3РО4 + 40 кДж

АДФ может подвергаться дальнейшему гидролизу (что происходит редко) с отщеплением ещё одной фосфатной группы и выделением второй «порции» энергии. При этом АДФ преобразуется в АМФ (аденозинмонофосфорную кислоту):

АДФ + Н2О → АМФ + Н3РО4 + 40 кДж

Синтез АТФ происходит в результате присоединения к молекуле АДФ остатка фосфорной кислоты (фосфорилирование). Этот процесс осуществляется главным образом в митохондриях и хлоропластах, частично в гиалоплазме клеток. Для образования 1 моль АТФ из АДФ должно быть затрачено не менее 40 кДж энергии:

АДФ + Н3РО4 + 40 кДж → АТФ + Н2О

АТФ является универсальным хранителем (аккумулятором) и переносчиком энергии в клетках живых организмов. Практически во всех биохимических процессах, идущих в клетках с затратами энергии, в качестве поставщика энергии используется АТФ. Благодаря энергии АТФ синтезируются новые молекулы белков, углеводов, липидов, осуществляется активный транспорт веществ, движение жгутиков и ресничек, происходит деление клеток, осуществляется работа мышц, поддерживается постоянная температура тела теплокровных животных и т. д.

4. Какие связи называются макроэргическими? Какие функции могут выполнять вещества, содержащие макроэргические связи?

Макроэргическими называют связи, при разрыве которых выделяется большое количество энергии (например, разрыв каждой макроэргической связи АТФ сопровождается высвобождением 40 кДж/моль энергии). Вещества, содержащие макроэргические связи, могут служить аккумуляторами, переносчиками и поставщиками энергии для осуществления различных процессов жизнедеятельности.

5. Общая формула АТФ - С10H16N5O13P3. При гидролизе 1 моль АТФ до АДФ выделяется 40 кДж энергии. Сколько энергии выделится при гидролизе 1 кг АТФ?

● Рассчитаем молярную массу АТФ:

М (С10H16N5O13P3) = 12 × 10 + 1 × 16 + 14 × 5 + 16 × 13 + 31 × 3 = 507 г/моль.

● При гидролизе 507 г АТФ (1 моль) выделяется 40 кДж энергии.

Значит, при гидролизе 1000 г АТФ выделится: 1000 г × 40 кДж: 507 г ≈ 78,9 кДж.

Ответ: при гидролизе 1 кг АТФ до АДФ выделится около 78,9 кДж энергии.

6. В одну клетку ввели молекулы АТФ, меченные радиоактивным фосфором 32Р по последнему (третьему) остатку фосфорной кислоты, а в другую - молекулы АТФ, меченные 32Р по первому (ближайшему к рибозе) остатку. Через 5 мин в обеих клетках измерили содержание неорганического фосфат-иона, меченного 32Р. Где оно оказалось выше и почему?

Последний (третий) остаток фосфорной кислоты легко отщепляется в процессе гидролиза АТФ, а первый (ближайший к рибозе) – не отщепляется даже при двухступенчатом гидролизе АТФ до АМФ. Поэтому содержание радиоактивного неорганического фосфата будет выше в той клетке, в которую ввели АТФ, меченную по последнему (третьему) остатку фосфорной кислоты.

Дашков М.Л.

Сайт: dashkov.by

Молекула РНК в отличие от ДНК, как правило, представляет собой одиночную цепочку нуклеотидов, которая значительно короче, чем ДНК. Однако общая масса РНК в клетке больше, чем ДНК. Молекулы РНК имеются и в ядре, и в цитоплазме.

Известны три основных типа РНК: информационные, или матричные, – иРНК; рибосомные – рРНК, транспортные – тРНК, которые различаются по форме, размерам и функциям молекул. Их главная функция – участие в биосинтезе белка.

Вы видите, что молекула РНК, как и молекула ДНК, состоит из четырех типов нуклеотидов, три из которых содержат такие же азотистые основания, как и нуклеотиды ДНК (А, Г, Ц) . Однако в состав РНК вместо азотистого основания тимина входит другое азотистое основание – урацил (У) . Таким образом, в состав нуклеотидов молекулы РНК входят азотистые основания: А, Г, Ц, У. Кроме того, вместо углевода дезоксирибозы в состав РНК входит рибоза.

В клетках всех организмов имеются молекулы АТФ – аденозинтрифосфорной кислоты. АТФ – универсальное вещество клетки, молекула которого имеет богатые энергией связи. Молекула АТФ – это один своеобразный нуклеотид, который, как и другие нуклеотиды, состоит из трех компонентов: азотистого основания – аденина, углевода – рибозы, но вместо одного содержит три остатка молекул фосфорной кислоты. Каждая молекула АТФ содержит две макроэргические связи.

При разрыве макроэргической связи и отщеплении с помощью ферментов одной молекулы фосфорной кислоты освобождается 40 кДж/моль энергии, а АТФ при этом превращается в АДФ – аденозиндифосфорную кислоту. При отщеплении еще одной молекулы фосфорной кислоты освобождается еще 40 кДж/моль; образуется АМФ – аденозинмонофосфорная кислота. Эти реакции обратимы, то есть АМФ может превращаться в АДФ, АДФ – в АТФ.

Молекула АТФ - что это и какова её роль в организме

Молекулы АТФ не только расщепляются, но и синтезируются, п bcd оэтому их содержание в клетке относительно постоянно. Значение АТФ в жизни клетки огромно. Эти молекулы играют ведущую роль в энергетическом обмене, необходимом для обеспечения жизнедеятельности клетки и организма в целом.