Какие существуют виды картографических. Ликбез по картографическим проекциям с картинками

Дата: 24.10.2015

Картографическая проекция - математический способ изображения земного шара (эллипсоида) на плоскости.

Для проектирования шаровидной поверхности на плоскость используют вспомогательные поверхности .

По виду вспомогательной картографической поверхности проекции разделяют на:

Цилиндрические 1 (вспомогательной поверхностью является боковая поверхность цилиндра), конические 2 (боковая поверхность конуса), азимутальные 3 (плоскость, которую называют картинной).

Также выделяют поликонические


псевдоцилиндрические условные


и другие проекции.

По ориентировке вспомогательной фигуры проекции разделяют на:

  • нормальные (в которых ось цилиндра или конуса совпадает с осью модели Земли, а картинная плоскость перпендикулярна к ней);
  • поперечные (в которых ось цилиндра или конуса перпендикулярна оси модели Земли, а картинная плоскость или параллельная ей);
  • косые , где ось вспомогательной фигуры находится в промежуточном положении между полюсом и экватором.

Картографические искажения - это нарушение геометрических свойств объектов земной поверхности (длин линий, углов, форм и площадей) при их изображении на карте.

Чем мельче масштаб карты, тем существеннее искажения. На крупномасштабных картах искажения является незначительными.

Выделяют четыре вида искажений на картах: длин , площадей , углов и форм объектов. Для каждой проекции характерны свои искажения.

По характеру искажений картографические проекции делятся на:

  • равноугольные , в которых хранятся углы и формы объектов, но искажаются длины и площади;


  • равновеликие , в которых хранятся площади, но существенно изменены углы и формы объектов;


  • произвольные , при которых искажения длин, площадей и углов, но они распределяются на карте равномерно. Среди них особо выделяют ривнопромижни проекции, при которых нет искажений длин или по параллелям, или по меридианам.

Линии и точки нулевых искажений - линии, вдоль которых и точки, в которых нет искажений, поскольку здесь при проектировании шаровидной поверхности на плоскость вспомогательная поверхность (цилиндр, конус или картинная плоскость) были касательными к шару.


Масштаб , указанный на картах, сохраняется только на линиях и в точках нулевых искажений . Он называется главным.

Во всех остальных частях карты масштаб отличается от главного и называется частичным. Для его определения требуются специальные расчеты.

Чтобы определить характер и величину искажений на карте, нужно сравнить градусную сетку карты и глобуса.

На глобусе все параллели находятся на одинаковом расстоянии друг от друга , все меридианы равны между собой и пересекаются с параллелями под прямым углом. Поэтому все клетки градусной сетки между соседними параллелями имеют одинаковые размеры и форму, а клетки между меридианами расширяются и увеличиваются от полюсов к экватору.

Для определения величины искажений также анализируют эллипсы искажений - эллипсовидные фигуры, образованные в результате искажения в определенной проекции кругов, проведенных на глобусе того же масштаба, что и карта.

В равноугольной проекции эллипсы искажений имеют форму круга, величина которого увеличивается в зависимости от расстояния от точек и линий нулевых искажений.

В равновеликой проекции эллипсы искажений имеют форму эллипсов, площади которых одинаковы (длина одной оси увеличивается, а второй - уменьшается).

В равнопромежуточной проекции эллипсы искажений иметь форму эллипсов с одинаковой длиной одной из осей.

Основные признаки искажений на карте

  1. Если расстояния между параллелями одинаковые, то это свидетельствует о том, что не искажаются расстояния по меридианам (равнопромежуточные по меридианам).
  2. Расстояния не искажаются по параллелям, если радиусы параллелей на карте соответствуют радиусам параллелей на глобусе.
  3. Не искажаются площади, если клетки, созданные меридианами и параллелями у экватора, являются квадратами, а их диагонали пересекаются под прямым углом.
  4. Искажаются длины по параллелям, если не искажаются длины по меридианам.
  5. Искажаются длины по меридианам, если не искажаются длины по параллелями.

Характер искажений в основных группах картографических проекций

Картографические проекции Искажения
Равноугольные Сохраняют углы, искажают площади и длины линий.
Равновеликие Сохраняют площади, искажают углы и формы.
Равнопромежуточные В одном направлении имеют постоянный масштаб длин, искажения углов и площадей находятся в равновесии.
Произвольные Искажают углы и площади.
Цилиндрические Вдоль линии экватора искажения отсутствуют, а по степени приближения к полюсам - увеличиваются.
Конические Искажения отсутствуют вдоль паралели касания конуса и глобуса.
Азимутальные Искажения отсутствуют в центральной части карты.

Картографическая проекция

Картографические проекции можно классифицировать по двум основным признакам:

По характеру искажений;

По виду меридианов и параллелей нормальной картографической сетки.

Картографическая сетка называется нормальной в том случае, если меридианы и параллели на карте в данной проекции изображаются более простыми линиями, чем координатные линии любой другой системы сферических координат.

По характеру искажений проекции делятся на равноугольные (конформные), равновеликие (эквивалентные), равнопромежуточные и произвольные.

Равноугольными (конформными ) называются такие проекции, в которых бесконечно малые фигуры на карте подобны соответствующим фигурам на глобусе. В этих проекциях бесконечно малый круг, взятый на глобусе в любой его точке, при перенесении на карту изобразится также бесконечно малым кругом, т. е. эллипс искажений в равноугольных проекциях обращается в круг. В равноугольных проекциях в бесконечно малых фигурах на карте и на глобусе соответствующие углы равны между собой, а стороны пропорциональны. Например, на рис. 15а, б АoМoКo= АМК, a . Масштабы по меридиану и параллели равны между собой, т. е. Т=п . Угол между меридианами и параллелями на карте = 90°, а общие формулы из теории искажений имеют вид

= т = п = а = B , Р = т2, = 0.

Равенство масштабов показывает, что масштаб в любой точке карты в равноугольных проекциях от направления не зависит. Но

Рис. 1. Бесконечно малый круг на глобусе и на карте в равноугольной проекции

При переходе от точки к точке (при изменении координат точки) масштаб меняется. Это значит, что одинаковые по своим размерам бесконечно малые круги, взятые в разных точках глобуса, изобразятся на карте также бесконечно малыми кругами, но различных размеров (в данном случае под бесконечно малым кругом на глобусе можно понимать круг с диаметром около 1 см).

Равновеликими (эквивалентными) называются такие проекции, в которых масштаб площади во всех точках карты равен единице. В этих проекциях бесконечно малый круг (рис. 2 а),

Рис. 2. Круг на глобусе и эллипс на карте в равновеликой проекции

Взятый на глобусе, изобразится на карте равным по площади бесконечно малым эллипсом (рис. 2 б).

Так как площадь эллипса

а площадь круга-по формуле

То для этих проекций будет справедливо равенство

При =1, свойство равновеликости проекций аналитически выражается равенством

P = Ab = L .

Итак, в равновеликих проекциях произведение масштабов по главным направлениям равно единице.

Если равноугольные проекции сохраняют равенство углов только в бесконечно малых фигурах, то равновеликие проекции сохраняют площади любых фигур независимо от их размеров на карте. В этих проекциях углы между меридианами и параллелями на карте могут быть не равны 90°. Следует помнить, что свойства равноугольности и равновеликости в одной проекции несовместимы, т. е. не может быть таких проекций, которые одновременно сохраняли бы равенство углов и равенство площадей во всех точках карты.

Равнопромежуточными называются такие проекции, в которых в каждой точке карты сохраняются длины по одному из главных направлений. В этих проекциях а =Или b = . При =1 аналитически свойство равнопромежуточности выражается равенством

А=1 Или B =1 .

Иногда под равнопромежуточными понимают и такие проекции, в которых отношение или остается постоянным, хотя и не равным единице.

В равнопромежуточных проекциях круг, взятый в любой точке глобуса (рис. 3 а), изобразится на карте эллипсом (рис. 3 б или 3 в), одна из полуосей которого будет равна радиусу этого круга.

По характеру искажений эти проекции занимают среднее место между равноугольными и равновеликими проекциями. Не сохраняя ни углов, ни площадей, они меньше, чем равновеликие проекции, искажают углы и меньше, чем равноугольные проекции, искажают площади и поэтому применяются в тех случаях, когда нет надобности за счет увеличения искажения площадей сохранить равенство углов или, наоборот, за счет увеличения искажения углов сохранить равенство площадей.

Произвольными называются такие проекции, которые не обладают свойствами равноугольности, равновеликости или равнопромежуточности. Класс произвольных проекций является наиболее обширным, сюда могут быть включены проекции, резко отличающиеся друг от друга по характеру искажений.

Произвольные проекции применяются в основном для карт мелкого масштаба, в частности для карт полушарий и мировых, и в отдельных случаях для карт крупного масштаба.

Рис. 3. Круг на глобусе и эллипсы на карте в равнопромежуточной проекции

По виду меридианов и параллелей нормальной картографической сетки проекции подразделяются на конические, цилиндрические, азимутальные, псевдоконические, псевдоцилиндрические, поликонические и прочие. Причем в пределах каждого из этих классов могут быть разные по характеру искажений проекции (равноугольные, равновеликие и т. д.).

Конические проекции

Коническими называются такие проекции, в которых параллели нормальной сетки изображаются дугами концентрических окружностей, а меридианы - их радиусами, углы между которыми на карте пропорциональны соответствующим разностям долгот в натуре.

Геометрически картографическую сетку в этих проекциях можно получить путем проектирования меридианов и параллелей на боковую поверхность конуса с последующим развертыванием этой поверхности в плоскость.

Представим себе конус, касающийся глобуса по некоторой параллели АоВоСо (рис. 4). Продолжим плоскости географических меридианов и параллелей глобуса до пересечения их с поверхностью конуса. Линии пересечения указанных плоскостей с поверхностью конуса примем соответственно за изображения меридианов и параллелей глобуса. Разрежем поверхность конуса по образующей и развернем ее в плоскость; тогда получим на плоскости картографическую сетку в одной из конических проекций (рис. 5).

Параллели с глобуса на поверхность конуса можно перенести и другими способами, а именно: путем проектирования лучами, исходящими из центра глобуса или из некоторой точки, находящейся на оси конуса, путем откладывания на меридианах проекции в обе стороны от параллели касания выпрямленных дуг меридианов глобуса, заключенных между параллелями, и последующего проведения через точки отложения концентрических окружностей из точки S (рис. 5), как из центра. В последнем случае параллели на плоскости будут расположены на таком же расстоянии друг от друга, как и на глобусе.

При указанных выше способах перенесения географической сетки с глобуса на поверхность конуса параллели на плоскости будут

Рис.4 Конус, касающийся Глобуса по параллели.

Рис. 5 Отложения концентрических окружностей.

Картографическая сетка в конической проекции изображаться дугами концентрических окружностей, а меридианы будут представлять собой прямые, исходящие из одной точки и составляющие между собой углы, пропорциональные соответствующим разностям долгот.

Последняя зависимость может быть выражена уравнением

Где угол между соседними меридианами на карте, называемый углом схождения, или сближения, меридианов на плоскости,

Разность долгот тех же меридианов,

Коэффициент пропорциональности, называемый показателем конической проекции. В конических проекциях Всегда меньше единицы.

Радиусы Параллелей на карте зависят от широты этих параллелей, т. е.

Таким образом, картографическую сетку можно сразу построить на плоскости, минуя проектирование на вспомогательную поверхность конуса, если известны показательИ зависимость между и .

При выборе конических проекций для изображения данной территории необходимо найти такое значение а и такую зависимость р от ср, чтобы получить требуемую по характеру искажений проекцию (равноугольную, равновеликую, равнопромежуточную или произвольную) с возможно меньшими искажениями в целом.

Конус по отношению к глобусу может быть расположен различно. Ось конуса может совпадать с полярной осью глобуса РР, составлять с нею угол в 90° и, наконец, пересекать ее под произвольным углом. В первом случае конические проекции называются нормальными (прямыми) , во втором - поперечными и в третъем - косыми. На рис. 7 показано положение конусов при нормальной (а), поперечной (б) и косой (в) конических проекциях. Каждая из них в свою очередь может быть на касательном или секущем конусе.

Очевидно, что в поперечной и косой конических проекциях при любых способах проектирования с глобуса на поверхность конуса меридианы и параллели изобразятся в виде сложных кривых линий. Сходящимися прямыми линиями и концентрическими окружностями на поверхности конуса в этих случаях соответственно изобразятся дуги больших кругов, проходящих через точки пересечения оси конуса с поверхностью глобуса, и перпендикулярные им дуги малых кругов. Указанные дуги больших кругов на сфере называются вертикалами, а дуги малых кругов - альмукантаратами.

Картографическая сетка имеет наиболее простой вид в нормальных конических проекциях, в которых она носит название нормальной, или прямой, сетки. В поперечных проекциях картографическая сетка называется поперечной, а в косых проекциях - косой.

Во всех нормальных конических проекциях, за исключением равноугольных, полюс изображается дугой. В равноугольных конических проекциях полюс изображается точкой.

Вид картографической сетки в нормальных конических проекциях для изображения северного полушария показан на рис. 8 (равнопромежуточная коническая проекция).

В нормальных конических проекциях линиями нулевых искажений являются параллели сечения или параллель касания, а изоколы совпадают с параллелями. Искажения нарастают в обе стороны по мере удаления от этих параллелей, причем масштаб по параллелям

На карте между параллелями сечения всегда меньше единицы, на параллели касания и на параллелях сечения равен единице, а в остальных местах больше единицы и возрастает по мере удаления от этих параллелей к полюсам. Аналитически конические проекции на касательном конусе характеризуются выражением

А на секущем конусе - выражением

Где - минимальный масштаб по параллели.

Конические проекции нашли широкое применение для изображения территорий, вытянутых узкой или широкой полосой вдоль параллелей. В первом случае выгоднее применять конические проекции на касательном конусе, во втором - на секущем конусе. В частности, для карт Украины широко используются конические проекции на секущем конусе.

Поперечные и косые конические проекции выгодно применять соответственно для карт стран, вытянутых вдоль дуг малых кругов, параллельных осевому меридиану, и дуг малых кругов произвольного направления, но эти проекции ввиду сложности их вычисления практического применения не нашли.

Цилиндрические проекции

Цилиндрическими называются такие проекции, в которых параллели нормальной сетки изображаются параллельными прямыми, а меридианы - равноотстоящими прямыми, перпендикулярными к линиям параллелей.

Геометрически картографическую сетку в этих проекциях можно получить путем проектирования меридианов и параллелей глобуса на боковую поверхность цилиндра с последующим развертыванием этой поверхности в плоскость.

Рис.8. Картографическая сетка в равнопромежуточной конической проекции.

Представим себе цилиндр, касающийся глобуса по экватору (рис. 9) Продолжим плоскости географических меридианов и параллелей до пересечения с боковой поверхностью цилиндра. Примем соответственно за изображения меридианов и параллелей на поверхности цилиндра линии пересечения указанных плоскостей с поверхностью цилиндра. Разрежем поверхность цилиндра по образующей и развернем ее в плоскость. Тогда на этой плоскости получится картографическая сетка в одной из цилиндрических проекции как и в конических проекциях, параллели нормальной картографической сетки можно перенести на поверхность цилиндра и другими способами, а именно: путем проектирования лучами, исходящими из центра глобуса или из некоторой точки, находящейся на оси цилиндра путем откладывания на меридианах проекции в обе стороны от экватора выпрямленных дуг меридианов глобуса, заключенных между параллелями, и последующего проведения через точки отложения прямых, параллельных экватору. В последнем случае параллели на карте будут расположены на одинаковом расстоянии друг от друга.

Рассмотренная цилиндрическая проекция (рис. 9) является проекцией на касательном цилиндре. Таким же образом можно построить и проекцию на секущем цилиндре.

На рис 10 показан цилиндр, секущий глобус по параллелям AFB и CKD. Очевидно, что в первом случае на экваторе (рис. 9), а во втором случае на параллелях сечения AFB и CKD (рис. 10) масштаб, на карте будет равен главному, т. е. экватор

Рис. 9. Цилиндр, касающийся глобуса по экватору, и часть поверхности цилиндра, развернутая в плоскость и указанные параллели сечения будут сохранять свою длину на карте. Цилиндр по отношению к глобусу может быть расположен различно.

Рис. 10. Цилиндр, секущий глобус по параллелям

В зависимости от положения оси цилиндра относительно оси глобуса цилиндрические проекции, подобно коническим, могут быть нормальными, поперечными и косыми. В соответствии с этим и картографическая сетка в этих проекциях будет иметь название нормальной, поперечной и косой. Поперечные и косые картографические сетки в цилиндрических проекциях имеют вид сложных кривых линий.

Как и в случае с коническими проекциями, для построения нормальных сеток цилиндрических проекций нет надобности проектировать поверхность глобуса сначала на цилиндр, а затем последний развертывать в плоскость. Для этого достаточно знать прямоугольные координаты х и у точек пересечения параллелей и меридианов на плоскости. Причем в цилиндрических проекциях абсциссы х выражают собой удаление параллелей от экватора, а ординаты у-удаление меридианов от среднего (осевого) меридиана.

Исходя из этого, общие уравнения всех нормальных цилиндрических проекций можно представить в виде:

Где С - постоянный множитель, представляющий собой радиус экватора (для проекций на касательном цилиндре) или радиус параллели сечения глобуса (для проекций на секущем цилиндре),

И - широта и долгота данной точки, выраженные в радианной мере,

Х, у - прямоугольные координаты той же точки на карте. В зависимости от выбора функции Цилиндрические проекции могут быть по характеру искажений равноугольными, равновеликими, равнопромежуточными или произвольными. Зависимостью же х от среднего определяются и расстояния между параллелями на карте. Расстояния между меридианами зависят от множителя С. Таким образом, выбирая ту или иную зависимость х от и то или иное значение С, можно получить требуемую проекцию как по характеру искажений, так и по распределению их относительно экватора или средней параллели карты (параллели сечения).

Рис 11 Картографическая сетка в квадратной цилиндрической проекции.

Вид картографической сетки в нормальных цилиндрических проекциях для изображения всей земной поверхности показан на рис. 11 (квадратная цилиндрическая проекция).

В цилиндрических проекциях так же, как и в конических, линиями нулевых искажений в нормальных картографических сетках являются параллели сечения или параллель касания, а изоколы совпадают с параллелями. Искажения нарастают по мере удаления от параллели касания (параллелей сечения) в обе стороны.

Нормальные цилиндрические проекции применяются в основном для изображения территорий, вытянутых вдоль экватора, и сравнительно редко для изображения территорий, вытянутых по произвольной параллели, так как в последнем случае они дают большие искажения, чем конические проекции.

В поперечных и косых цилиндрических проекциях линией нулевых искажений является дуга большого круга, по которой цилиндр касается шара или эллипсоида. Изоколы изображаются прямыми, параллельными линии нулевых искажений, а искажения нарастают в обе стороны от линии нулевых искажений.

Поперечные цилиндрические проекции применяются для изображения территорий, вытянутых вдоль меридиана, а косые - для изображения территорий, вытянутых в произвольном направлении по дуге большого круга.

Азимутальные проекции

Азимутальными (зенитальными) называются такие проекции, в которых параллели нормальной сетки изображаются концентрическими окружностями, а меридианы - их радиусами, углы между которыми равны соответствующим разностям долгот в натуре. Геометрически картографическую сетку в этих проекциях можно получить следующим образом. Если через ось глобуса и меридианы провести плоскости до их пересечения с плоскостью, касательной к глобусу в одном из полюсов, то на последней образуются меридианы в азимутальной проекции. При этом углы между меридианами на плоскости будут равны соответствующим двугранным углам на глобусе, т. е. разностям долгот меридианов. Для получения параллелей в азимутальной проекции из точки пересечения меридианов проекции, как из центра, следует провести концентрические окружности радиусами, равными, например, выпрямленным дугам меридианов от полюса до соответствующих параллелей. При таких радиусах параллелей получится равнопромежуточная азимутальная проекция

Плоскость может не только касаться, но и сечь поверхность глобуса по некоторому малому кругу, от этого сущность азимутальной проекции не меняется. Так же, как и в конических проекциях, в зависимости от расположения плоскости относительно полярной оси глобуса картографическая сетка в азимутальных проекциях может быть нормальной (прямой), поперечной и косой. При нормальной картографической сетке плоскость касается глобуса в одном из полюсов, при поперечной - в точке, лежащей на экваторе, и при косой - в Некоторой произвольной точке с широтой больше 0° и меньше 90°. Нормальные азимутальные проекции называются также полярными, поперечные - экваториальными и косые - горизонтальными азимутальными проекциями.

Исходя из определения нормальных азимутальных проекций, их общие уравнения можно выразить так

В зависимости от характера связи между радиусом параллели на карте и ее широтой азимутальные проекции по характеру искажений могут быть равноугольными, равновеликими, равнопромежуточными и произвольными.

Рис 12 Картографическая сетка и изоколы углов в косой азимутальной проекции.

В азимутальных проекциях на касательной плоскости точка касания шара или эллипсоида является точкой нулевых искажений, а в проекциях на секущей плоскости окружность сечения служит линией нулевых искажений В обоих случаях изоколы имеют вид концентрических окружностей, совпадающих с параллелями нормальной сетки. Искажения нарастают по мере удаления от точки нулевых искажений (от линии нулевых искажений).

Нормальные, поперечные и косые азимутальные проекции нашли широкое применение для изображения территорий, имеющих округлую форму. В частности, для изображения северного и южного полушарий употребляются только нормальные, а западного и восточного полушарий - только поперечные азимутальные проекции. Косые азимутальные проекции применяются для карт отдельных материков. Вид картографической сетки и изокол углов в одной из косых азимутальных проекций показан на рис. 12. Частным случаем азимутальных проекций являются проекции перспективные.

Перспективными называются такие проекции, в которых параллели и меридианы с шара или эллипсоида переносятся на плоскость по законам линейной перспективы, т. е. при помощи прямых лучей, исходящих из так называемой точки зрения. При этом принимается обязательное условие, чтобы точка зрения находилась на главном луче, т. е. на линии, проходящей через центр шара или эллипсоида, а плоскость проекции (картинная плоскость) была перпендикулярна к этому лучу.

Классификация картографических проекций - 4.2 out of 5 based on 6 votes

Картографические проекции

отображения всей поверхности земного эллипсоида (См. Земной эллипсоид) или какую-либо её части на плоскость, получаемые в основном с целью построения карты.

Масштаб. К. п. строятся в определённом масштабе. Уменьшая мысленно земной эллипсоид в М раз, например в 10 000 000 раз, получают его геометрическую модель - Глобус , изображение которого уже в натуральную величину на плоскости даёт карту поверхности этого эллипсоида. Величина 1: М (в примере 1: 10 000 000) определяет главный, или общий, масштаб карты. Т. к. поверхности эллипсоида и шара не могут быть развёрнуты на плоскость без разрывов и складок (они не принадлежат к классу развёртывающихся поверхностей (См. Развёртывающаяся поверхность)), любой К. п. присущи искажения длин линий, углов и т.п., свойственные всякой карте. Основной характеристикой К. п. в любой её точке является частный масштаб μ. Это - величина, обратная отношению бесконечно малого отрезка ds на земном эллипсоиде к его изображению на плоскости: μ min ≤ μ ≤ μ max , и равенство здесь возможно лишь в отдельных точках или вдоль некоторых линий на карте. Т. о., главный масштаб карты характеризует её только в общих чертах, в некотором осреднённом виде. Отношение μ/М называют относительным масштабом, или увеличением длины, разность М = 1.

Общие сведения. Теория К. п. - Математическая картография - имеет своей целью изучение всех видов искажений отображений поверхности земного эллипсоида на плоскость и разработку методов построения таких проекций, в которых искажения имели бы или наименьшие (в каком-либо смысле) значения или заранее заданное распределение.

Исходя из нужд картографии (См. Картография), в теории К. п. рассматривают отображения поверхности земного эллипсоида на плоскость. Т. к. земной эллипсоид имеет малое сжатие, и его поверхность незначительно отступает от сферы, а также в связи с тем, что К. п. необходимы для составления карт в средних и мелких масштабах (М > 1 000 000), то часто ограничиваются рассмотрением отображений на плоскость сферы некоторого радиуса R , отклонениями которой от эллипсоида можно пренебречь или каким-либо способом учесть. Поэтому далее имеются в виду отображения на плоскость хОу сферы, отнесённой к географическим координатам φ (широта) и λ (долгота).

Уравнения любой К. п. имеют вид

x = f 1 (φ, λ), y = f 2 (φ, λ) , (1)

где f 1 и f 2 - функции, удовлетворяющие некоторым общим условиям. Изображения меридианов λ = const и параллелей φ = const в данной К. п. образуют картографическую сетку. К. п. может быть определена также двумя уравнениями, в которых фигурируют не прямоугольные координаты х , у плоскости, а какие-либо иные. Некоторые К. п. [например, Перспективные проекции (в частности, ортографические, рис. 2 ) перспективно-цилиндрические (рис. 7 ) и др.] можно определить геометрическими построениями. К. п. определяют также правилом построения соответствующей ей картографической сетки или такими её характеристическими свойствами, из которых могут быть получены уравнения вида (1), полностью определяющие проекцию.

Краткие исторические сведения. Развитие теории К. п., как и всей картографии, тесно связано с развитием геодезии, астрономии, географии, математики. Научные основы картографии были заложены в Древней Греции (6-1 вв. до н. э.). Древнейшей К. п. считается Гномоническая проекция , примененная Фалесом Милетским к построению карт звёздного неба. После установления в 3 в. до н. э. шарообразности Земли К. п. стали изобретаться и использоваться при составлении географических карт (Гиппарх , Птолемей и др.). Значительный подъём картографии в 16 в., вызванный Великими географическими открытиями, привёл к созданию ряда новых проекций; одна из них, предложенная Г. Меркатор ом, используется и в настоящее время (см. Меркатора проекция). В 17-18 вв., когда широкая организация топографических съёмок стала поставлять достоверный материал для составления карт на значительной территории, К. п. разрабатывались как основа для топографических карт (французский картограф Р. Бонн, Дж. Д. Кассини), а также выполнялись исследования отдельных наиболее важных групп К. п. (И. Ламберт , Л. Эйлер , Ж. Лагранж и др.). Развитие военной картографии и дальнейшее увеличение объёма топографических работ в 19 в. потребовали обеспечения математической основы крупномасштабных карт и введения системы прямоугольных координат на базе, более подходящей К. п. Это привело К. Гаусс а к разработке фундаментальной геодезической проекции (См. Геодезические проекции). Наконец, в середине 19 в. А. Тиссо (Франция) дал общую теорию искажений К. п. Развитие теории К. п. в России было тесно связано с запросами практики и дало много оригинальных результатов (Л. Эйлер, Ф. И. Шуберт , П. Л. Чебышев , Д. А. Граве и др.). В трудах советских картографов В. В. Каврайского (См. Каврайский), Н. А. Урмаев а и др. разработаны новые группы К. и., отдельные их варианты (до стадии практического использования), важные вопросы общей теории К. п., классификации их и др.

Теория искажений. Искажения в бесконечно малой области около какой-либо точки проекции подчиняются некоторым общим законам. Во всякой точке карты в проекции, не являющейся равноугольной (см. ниже), существуют два таких взаимно перпендикулярных направления, которым на отображаемой поверхности соответствуют также взаимно перпендикулярные направления, это - так называемые главные направления отображения. Масштабы по этим направлениям (главные масштабы) имеют экстремальные значения: μ max = а и μ min = b . Если в какой-либо проекции меридианы и параллели на карте пересекаются под прямым углом, то их направления и есть главные для данной проекции. Искажение длины в данной точке проекции наглядно представляет эллипс искажений, подобный и подобно расположенный изображению бесконечно малой окружности, описанной вокруг соответствующей точки отображаемой поверхности. Полудиаметры этого эллипса численно равны частным масштабам в данной точке в соответствующих направлениях, полуоси эллипса равны экстремальным масштабам, а направления их - главные.

Связь между элементами эллипса искажений, искажениями К. п. и частными производными функций (1) устанавливается основными формулами теории искажений.

Классификация картографических проекций по положению полюса используемых сферических координат. Полюсы сферы суть особые точки географической координации, хотя сфера в этих точках не имеет каких-либо особенностей. Значит, при картографировании областей, содержащих географические полюсы, желательно иногда применять не географические координаты, а другие, в которых полюсы оказываются обыкновенными точками координации. Поэтому на сфере используют сферические координаты, координатные линии которых, так называемые вертикалы (условная долгота на них а = const ) и альмукантараты (где полярные расстояния z = const ), аналогичны географическим меридианам и параллелям, но их полюс Z 0 не совпадает с географическим полюсом P 0 (рис. 1 ). Переход от географических координат φ , λ любой точки сферы к её сферическим координатам z , a при заданном положении полюса Z 0 (φ 0 , λ 0) осуществляется по формулам сферической тригонометрии. Всякая К. п., данная уравнениями (1), называется нормальной, или прямой (φ 0 = π/2 ). Если та же самая проекция сферы вычисляется по тем же формулам (1), в которых вместо φ , λ фигурируют z , a , то эта проекция называется поперечной при φ 0 = 0 , λ 0 и косой, если 0 . Применение косых и поперечных проекций приводит к уменьшению искажений. На рис. 2 показана нормальная (а), поперечная (б) и косая (в) ортографические проекции (См. Ортографическая проекция) сферы (поверхности шара).

Классификация картографических проекций по характеру искажений. В равноугольных (конформных) К. п. масштаб зависит только от положения точки и не зависит от направления. Эллипсы искажений вырождаются в окружности. Примеры - проекция Меркатор, Стереографическая проекция .

В равновеликих (эквивалентных) К. п. сохраняются площади; точнее, площади фигур на картах, составленных в таких проекциях, пропорциональны площадям соответствующих фигур в натуре, причём коэффициент пропорциональности - величина, обратная квадрату главного масштаба карты. Эллипсы искажений всегда имеют одинаковую площадь, различаясь формой и ориентировкой.

Произвольные К. п. не относятся ни к равноугольным, ни к равновеликим. Из них выделяют равнопромежуточные, в которых один из главных масштабов равен единице, и ортодромические, в которых большие круги шара (ортодромы) изображаются прямыми.

При изображении сферы на плоскости свойства равноугольности, равновеликости, равнопромежуточности и ортодромичности несовместимы. Для показа искажений в разных местах изображаемой области применяют: а) эллипсы искажений, построенные в разных местах сетки или эскиза карты (рис. 3 ); б) изоколы, т. е. линии равного значения искажений (на рис. 8в см. изоколы наибольшего искажения углов со и изоколы масштаба площадей р ); в) изображения в некоторых местах карты некоторых сферических линий, обычно ортодромий (О) и локсодромий (Л), см. рис. 3а , и др.

Классификация нормальных картографических проекций по виду изображений меридианов и параллелей, являющаяся результатом исторического развития теории К. п., объемлет большинство известных проекций. В ней сохранились наименования, связанные с геометрическим методом получения проекций, однако рассматриваемые их группы теперь определяют аналитически.

Цилиндрические проекции (рис. 3 ) - проекции, в которых меридианы изображаются равноотстоящими параллельными прямыми, а параллели - прямыми, перпендикулярными к изображениям меридианов. Выгодны для изображения территорий, вытянутых вдоль экватора или какие-либо параллели. В навигации используется проекция Меркатора - равноугольная цилиндрическая проекция. Проекция Гаусса - Крюгера - равноугольная поперечно-цилиндрическая К. п. - применяется при составлении топографических карт и обработке триангуляций.

Азимутальные проекции (рис. 5 ) - проекции, в которых параллели - концентрические окружности, меридианы - их радиусы, при этом углы между последними равны соответствующим разностям долгот. Частным случаем азимутальных проекций являются перспективные проекции.

Псевдоконические проекции (рис. 6 ) - проекции, в которых параллели изображаются концентрическими окружностями, средний меридиан - прямой линией, остальные меридианы - кривыми. Часто применяется равновеликая псевдоконическая проекция Бонна; в ней с 1847 составлялась трёхвёрстная (1: 126 000) карта Европейской части России.

Псевдоцилиндрические проекции (рис. 8 ) - проекции, в которых параллели изображаются параллельными прямыми, средний меридиан - прямой линией, перпендикулярной этим прямым и являющейся осью симметрии проекций, остальные меридианы - кривыми.

Поликонические проекции (рис. 9 ) - проекции, в которых параллели изображаются окружностями с центрами, расположенными на одной прямой, изображающей средний меридиан. При построении конкретных поликонических проекций ставятся дополнительные условия. Одна из поликонических проекций рекомендована для международной (1: 1 000 000) карты.

Существует много проекций, не относящихся к указанным видам. Цилиндрические, конические и азимутальные проекции, называемые простейшими, часто относят к круговым проекциям в широком смысле, выделяя из них круговые проекции в узком смысле - проекции, в которых все меридианы и параллели изображаются окружностями, например конформные проекции Лагранжа, проекция Гринтена и др.

Использование и выбор картографических проекций зависят главным образом от назначения карты и её масштаба, которыми часто обусловливается характер допускаемых искажений в избираемой К. п. Карты крупных и средних масштабов, предназначенные для решения метрических задач, обычно составляют в равноугольных проекциях, а карты мелких масштабов, используемые для общих обозрений и определения соотношения площадей каких-либо территорий - в равновеликих. При этом возможно некоторое нарушение определяющих условий этих проекций (ω ≡ 0 или р ≡ 1 ), не приводящее к ощутимым погрешностям, т. е. допустим выбор произвольных проекций, из которых чаще применяют проекции равнопромежуточные по меридианам. К последним прибегают и тогда, когда назначением карты вообще не предусмотрено сохранение углов или площадей. При выборе К. п. начинают с простейших, затем переходят к более сложным проекциям, даже, возможно, модифицируя их. Если ни одна из известных К. п. не удовлетворяет требованиям, предъявляемым к составляемой карте со стороны её назначения, то изыскивают новую, наиболее подходящую К. п., пытаясь (насколько это возможно) уменьшить искажения в ней. Проблема построения наивыгоднейших К. п., в которых искажения в каком-либо смысле сведены до минимума, полностью ещё не решена.

К. п. используются также в навигации, астрономии, кристаллографии и др.; их изыскивают для целей картографирования Луны, планет и др. небесных тел.

Преобразование проекций. Рассматривая две К. п., заданные соответствующими системами уравнений: x = f 1 (φ, λ) , y = f 2 (φ, λ) и X = g 1 (φ, λ) , Y = g 2 (φ, λ) , можно, исключая из этих уравнении φ и λ, установить переход от одной из них к другой:

Х = F 1 (x, у) , Y = F 2 (x, у) .

Эти формулы при конкретизации вида функций F 1 , F 2 , во-первых, дают общий метод получения так называемых производных проекций; во-вторых, составляют теоретическую основу всевозможных способов технических приёмов составления карт (см. Географические карты). Например, аффинные и дробно-линейные преобразования осуществляются при помощи картографических трансформаторов (См. Картографический трансформатор). Однако более общие преобразования требуют применения новой, в частности электронной, техники. Задача создания совершенных трансформаторов К. п. - актуальная проблема современной картографии.

Лит.: Витковский В., Картография. (Теория картографических проекций), СПБ. 1907; Каврайский В. В., Математическая картография, М. - Л., 1934; его же, Избр. труды, т. 2, в. 1-3, [М.], 1958-60; Урмаев Н. А., Математическая картография, М., 1941; его же, Методы изыскания новых картографических проекций, М., 1947; Граур А. В., Математическая картография, 2 изд., Л., 1956; Гинзбург Г. А., Картографические проекции, М., 1951; Мещеряков Г. А., Теоретические основы математической картографии, М., 1968.

Г. А. Мещеряков.

2. Шар и его ортографические проекции.

3а. Цилиндрические проекции. Равноугольная Меркатора.

3б. Цилиндрические проекции. Равнопромежуточная (прямоугольная).

3в. Цилиндрические проекции. Равновеликая (изоцилиндрическая).

4а. Конические проекции. Равноугольная.

4б. Конические проекции. Равнопромежуточная.

4в. Конические проекции. Равновеликая.

Рис. 5а. Азимутальные проекции. Равноугольная (стереографическая) слева - поперечная, справа - косая.

Рис. 5б. Азимутальные проекции. Равнопромежуточная (слева - поперечная, справа - косая).

Рис. 5в. Азимутальные проекции. Равновеликая (слева - поперечная, справа - косая).

Рис. 8а. Псевдоцилиндрические проекции. Равновеликая проекция Мольвейде.

Рис. 8б. Псевдоцилиндрические проекции. Равновеликая синусоидальная проекция В. В. Каврайского.

Рис. 8в. Псевдоцилиндрические проекции. Произвольная проекция ЦНИИГАиК.

Рис. 8г. Псевдоцилиндрические проекции. Проекция БСАМ.

Рис. 9а. Поликонические проекции. Простая.

Рис. 9б. Поликонические проекции. Произвольная проекция Г. А. Гинзбурга.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Картографические проекции" в других словарях:

    Математические способы изображения на плоскости поверхности земного эллипсоида или шара. Картографические проекции определяют зависимость между координатами точек на поверхности земного эллипсоида и на плоскости. Из за невозможности развернуть… … Большой Энциклопедический словарь

    КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ, системные методы нанесения меридианов и параллелей Земли на плоскую поверхность. Только на глобусе можно достоверно представить территории и формы. На плоских картах больших территорий искажения неизбежны. Проекции это… … Научно-технический энциклопедический словарь

3. И наконец заключительным этапом создания карты является отображение уменьшенной поверхность эллипсоида на плоскости, т.е. применение картографической проекции (математический способ изображения на плоскости пов-ти эллипсоида.).

Поверхность эллипсоида нельзя без искажения развернуть на плоскость. Поэтому она проецируется на фигуру, которую можно развернуть на плоскость (Рис). При этом возникают искажения углов между параллелями и меридианами, расстояний, площадей.

Существует несколько сотен проекций, которые используются в картографии. Разберем далее их основные типы, не вдаваясь во все многоообразие деталей.

В соответствии с типом искажений проекци деляться на:

1. Равноугольные (конформные) – проекции, не искажающие углов. При этом сохраняется подобие фигур, масштаб изменяется с изменением широты и долготы. Отношение площадей не сохраняется на карте.

2. Равновеликие (эквивалентные) – проекции, на которых масштаб площадей везде одинаков и площади на картах пропорциональны соответствующим площадям на Земле. Однако масштаб длин в каждой точке разный по разным направлениям. не сохраняются равенство углов и подобие фигур.

3. Равнопромежуточные проекции- проекции, сохраняющие постоянство масштаба по одному из главных направлений.

4. Произвольные проекции - проекции, не относящиеся ни к одной из рассмотренных групп, но обладающие какими-либо другими, важными для практики свойствами, называются произвольными.

Рис. Проецирование эллипсоида на фигуру, разворачиваемую в плоскость.

В зависимости от того на какую фигуру проецируется поверхность эллипсоида (цилиндр, конус или плоскость) проекции делятся на три основных типа: цилиндрические, конические и азимутальные. Тип фигуры, на которую проецируется эллипсоид определяет вид параллелей и меридианов на карте.

Рис. Различие проекций по типу фигур на которую проецируется поверхность эллипсоида и вид разверток этих фигур на плоскости.

В свою очередь в зависимости от ориентации цилундра либо конуса относительно эллипсоида цилиндрические и конические проекции могут быть: прямыми - ось цилиндра или конуса совпадает с осью Земли, поперечными - ось цилиндра или конуса перпендикулярна оси Земли и косыми - ось цилиндра или конуса наклонена к оси Земли под углом, отличным от 0° и 90°.

Рис. Различие проекций по ориентации фигуры на которую проецируется эллипсоид относительно Земной оси.

Конус и цилиндр могут либо касаться поверхности эллипсоида, либо пересекать ее. Взависимости от этого проекция будет касательная или секущая. Рис.



Рис. Касательная и секущая проекции.

Нетрудно заметить (рис), что длина линии на эллипсоиде и длина линии на фигуре которую он проецируется будет одна и таже вдоль экватора, касательной к конусу для касательной проекции и вдоль секущих линий конуса и цилиндра при секущей проекции.

Т.е. для этих линий масштаб карты будет точно соответствовать масштабу эллипсоида. Для остальных точек карты масштаб будет несколько больше или меньше. Это необходимо учитывать при нарезке листов карты.

Касательная к конусу для касательной проекции и секущие конуса и цилиндра для секущей проекции называются стандартными параллелями.

Для азимутальной проекции также существует несколько разновидностей.

В зависимости от ориентации касательной к эллипсоиду плоскости азумутальная проеция может быль полярной, экваториальной или косой (рис)

Рис. Виды Азимутальной проекции по положению касательной плоскости.

В зависимости от положения воображаемого источника света, который проецирует эллипсоид на плоскость – в центре эллипсоида, на полюсе, или на бесконечном удалении различают гномоническую (цетрально-перспективную), стереографическую и ортографическую проекции рис

Рис. Виды азимутальной проеции по положению воображаемого источника света.

Географические координаты любой точки эллипсоида остаются неизменными при любом выборе картографической проекции (определяются только выбранной системой «географических» координат). Однако наряду с географическими, для проекций эллипсоида на плоскости используют так называемые спроектированная системы координат. Это прямоугольные системы координат - с началом координат в определенной точке, чаще всего имеющей координаты 0,0. Координаты в таких системах измеряются в единицах длины (метрах). Более подробно об этом речь пойдет ниже при рассмотрении конкретных проекций. Часто при упоминании о системы координат слова «географические» и «спроецированная», опускают, что приводит к некоторой путанице. Географические координаты определяются выбранным эллипсоидом и его привязками к геоиду, «спроецированные» - выбранным типом проекции уже после выбора эллипсоида. В зависимости от выбранной проекции одним «географическим» координатам могут соответствовать разные «спроецированные». И наобоот одним и тем же «спроецированным» координатам могут соответствовать разные «географические», если проекция применена к разным эллипсоидам. На картах могут обозначаться одновременно как те так и другие координаты и «спроецированные» тоже являются географическими, если понимать дословно, что они описывают Землю. Подчеркнем, еще раз, что принципиальным является то, что «спроецированные» координаты связаны с типом проекции и измеряются, в единицах длины (метрах), а «географические» не зависят от выбранной проекции.

Рассмотрим теперь более детально две картографические проекции, наиболее важные для практической работе в археологии. Это проекция Гаусса-Крюгера и проекция Universal Transverse Mercator (UTM) – разновидности равноугольной поперечно (transverse)-цилиндрической проекции. Проекцию называют по имени флпмпндского картографа Меркатора, впервые применившему прямую цилиндрическую проекцию при создании карт.

Первая из этих проекций была разработана немецким математиком Карлом Фридррихом Гауссом в 1820-30 гг. для картографирования Германии - так называемой ганноверской триангуляции. Как истинно великий математик, он решил эту частную задачу в общем виде и сделал проекцию, пригодную для картографирования всей Земли. Математическое описание проекции было опубликовано в 1866 г. В 1912-19 гг. другой немецкий математик Крюгер Иоганнес Генрих Луис провел исследование этой проекции и разработал для нее новый, более удобный математический аппарат. С этого времени проекция называется по их именам - проекцией Гаусса-Крюгера

Проекция UTM была разработана после Второй Мировой Войны, когда страны НАТО пришли к согласию, что необходима стандартная пространственная система координат. Так как каждая из армий стран НАТО использовала свою собственную пространственную систему координат, было невозможным точно координировать военные перемещения между странами. Опрделение параметров системы UTM было опубликовано Армией США в 1951 г.

Для получения картографической сетки и составления по ней карты в проекции Гаусса-Крюгера поверхность земного эллипсоида разбивают по меридианам на 60 зон по 6° каждая. Как нетрудно заметить это соответствует разбиению Земного шара на 6°-е зоны при построении карты масштаба 1:100000. Зоны нумеруются с запада на восток, начиная с 0°: зона 1 простирается с меридиана 0° до меридиана 6°, ее центральный меридиан 3°. Зона 2 - с 6° до 12°, и т. д. Нумерация номенклатурных листов начинается с 180°, например, лист N-39 находится в 9-й зоне.

Для связи долготы точки λ и номера n зоны в которой точка находится можно использовать соотношения:

в Восточном полушарии n = (целая часть от λ/ 6°) + 1, где λ – градусы восточной долготы

в Западном полушарии n = (целая часть от (360-λ)/ 6°) + 1, где λ – градусы западной долготы.

Рис. Разбиение на зоны в проекции Гауса-Крюгера.

Далле каждая из зон проектируется на поверхность цилиндра, а цилиндр разрезается по образующей и разворачивается на плоскость. Рис

Рис. Система координат в пределах 6 градусных зон в проекциях ГК и UTM.

В проекции Гаусса-Крюгера цилиндр касается эллипсоида по центральному меридиану и масштаб вдоль него равен 1. рис

Для каждой зоны отсчет координат X, Y ведется в метрах от начала координат зоны, причем Х расстояние от экватора (по вертикали!), а Y- по горизонтали. Вертикальные линии сетки параллельны центральному меридиану. Начало координат смещено, от центрального меридиана зоны на запад (или центр зоны смещен на восток, для обозначения этого смещения часто используют английский термин – «false easting») на 500000 м для того, чтобы координата Х была положительной во всей зоне т. е. координата X на центральном меридиане равна 500 000 м.

В южном полушарии в тех же целях вводится северное смещение (false northing) 10 000 000 м.

Координаты записыватся в виде Х=1111111.1 м, Y=6222222,2 м либо

X s =1111111.0 м, Y=6222222,2 м

X s - означает, что точка в южном полушарии

6 – первая или две первые цифры в Y координате (соответственно всего 7 или 8 цифр до запятой) означают номер зоны. (Санкт-Петербург, Пулково -30 град 19 минут восточной долготы 30:6+1=6 - 6 зона).

В проекции Гаусса–Крюгера для эллипсоида Красовского составлены все топографические карты СССР масштаба 1:500000 и крупнее применение этой проекции в СССР началовсь в 1928 году.

2. Проекция UTM в целом аналогична проеции Гаусса-Крюгера, однако нумерация 6-градусных зон ведется по другому. Отсчет зон происходит от 180 меридиана на восток, таким образом номер зоны в проекции UTM на 30 больше, чем системе координат Гаусса-Крюгера (Санкт-Петербург, Пулково -30 град 19 минут восточной долготы 30:6+1+30=36 - 36 зона).

Кроме того UTM - это проекция на секущий цилиндр и масштаб равен единице вдоль двух секущих линий, отстоящих от центрального меридиана на 180 000 м.

В проекции UTM координаты приводятся в виде: Северное полушарие, 36 зона, N (северное положение)=1111111.1 м, E (восточное положение)=222222.2м. Начало координат каждой зоны также смещено на 500000 м на запад от центрального меридиана и на 10000000 на юг от экватора для южного полушария.

В проекции UTM составлены современные карты многих стран Европы.

Сравнение проекций Гаусса-Крюгера и UTM приведено в таблице

Параметр UTM Гаус-Крюгер
Величина зоны 6 градусов 6 градусов
Нулевой меридиан -180 градусов 0 градусов (Гринвич)
Масштаб коэф = 1 Секущие на расст 180 км от центр.меридиана зоны Центральный меридиан зоны.
Центральный меридиан иоответствующая ему зона 3-9-15-21-27-33-39-45 и.т.д 31-32-33-34-35-35-37-38-… 3-9-15-21-27-33-39-45 и.т.д 1-2-3-4-5-6-7-8-…
Соответствующая центр мердиану зона 31 32 33 34
Масштабный коэфф. по центральному меридиану 0,9996
Ложный восток (м) 500 000 500 000
Ложный север (м) 0 – северное полушарие 0 – северное полушарие
10 000 000 – южное полушарие

Забегая вперед следует отметить, что большинство GPS навигаторов может показывать координаты в поекции UTM, но не могут в проекции Гаусса-Крюгера для эллипсода Красовского (т.е. в системе координат СК-42).

Каждый лист карты или плана имеет законченное оформление. Основными элементами листа являются: 1) собственно картографическое изображение участка земной поверхности, координатная сетка; 2) рамка листа, элементы которой определены математической основой; 3) зарамочное оформление (вспомогательное оснащение), которое включает данные, облегчающие пользование картой.

Картографическое изображение листа ограничивается внутренней рамкой в виде тонкой линии. Северная и южная стороны рамки - отрезки параллелей, восточная и западная - отрезки меридианов, значение которых определяется общей системой разграфки топографических карт. Значения долготы меридианов и широты параллелей, ограничивающих лист карты, подписываются возле углов рамки: долгота на продолжении меридианов, широта на продолжении параллелей.

На некотором расстоянии от внутренней рамки вычерчивается так называемая минутная рамка, на которой показаны выходы меридианов и параллелей. Рамка представляет собой двойную линию, расчерченную на отрезки, соответствующие линейной протяженности 1" меридиана или параллели. Количество минутных отрезков на северной и южной сторонах рамки равно разности значений долготы западной и восточной сторон. На западной и восточной сторонах рамки количество отрезков определяется разностью значений широты северной и южной сторон.

Завершающим элементом является внешняя рамка в виде утолщенной линии. Часто она составляет одно целое с минутной рамкой. В промежутках между ними дается разметка минутных отрезков на десятисекундные, границы которых отмечены точками. Это упрощает работу с картой.

На картах масштаба 1: 500 000 и 1: 1 000 000 дается картографическая сетка параллелей и меридианов, а на картах масштаба 1: 10 000 - 1: 200 000 - координатная сетка, или километровая, так как линии ее проводятся через целое число километров (1 км в масштабе 1: 10 000 - 1: 50 000, 2 км в масштабе 1: 100 000, 4 км в масштабе 1: 200 000).

Значения километровых линий подписываются в промежутках между внутренней и минутной рамками: абсциссы на концах горизонтальных линий, ординаты на концах вертикальных. У крайних линий указываются полные значения координат, у промежуточных - сокращенные (только десятки и единицы километров). Кроме обозначений на концах часть километровых линий имеет подписи координат внутри листа.

Важным элементом зарамочного оформления являются сведения о среднем на территорию листа карты магнитном склонении, относящиеся к моменту его определения, и годовом изменении магнитного склонения, которые помещают на топографических картах масштаба 1:200 000 и крупнее. Как известно магнитный и географический полюса не совпадают и стрелка копмаса показывает направление несколько отличающееся от на правленя на географический пояс. Величину этого отклонения и называют магнитным склонением. Оно может быть восточное, либо западное. Прибавив к величине магнитного склонения годовое изменение магнитного склонения, умноженное на число лет пошедщих с момента создания карты до текущего момента определить магнитное склонение на текущий момент.

В заключении темы об основах картографии остановимся кратко на истории картографии в России.

Первые карты с отображенной географической системой координат (карты России Ф. Годунова (издана в 1613г.), Г. Геритса, И. Массы, Н. Витсена) появились в XVII веке.

В соответствии с законодательным актом русского правительства (боярским “приговором”) от 10 января 1696 «О снятии чертежа Сибири на холсте с показанием в оном городов, селений, народов и расстояний между урочищами» С.У. Ремизовым (1642-1720) создается огромное (217х277 см) картографическое произведение «Чертеж всех сибирских градов и земель», ныне находится в постоянной экспозиции Государственного Эрмитажа. 1701 г. - 1 января – дата, стоящая на первом титульном листе Атласа России Ремизова.

В 1726-34 гг. выходит в свет первый Атлас Всероссийской Империи, руководителем работ по созданию которого был обер-секретарь Сената И. К. Кириллов. Атлас был издан на латинском языке, и состоял из 14 специальных и одной генеральной карты под заглавием "Atlas Imperii Russici". В 1745 году был издан "Атлас Всероссийский". Первоначально работами по составлению атласа руководил академик, астроном И. Н. Делиль, представивший в 1728 г. проект составления атласа Российской империи. Начиная с 1739 года выполнение работ по составлению атласа осуществлял учрежденный по инициативе Делиля Географический департамент Академии Наук, задачей которого было составление карт России. Атлас Делиля включает комментарии к картам, таблицу с географическими координатами 62 городов России, легенду карт и сами карты: Европейской России на 13 листах при масштабе 34 версты в дюйме (1:1428000), Азиатской России на 6 листах в меньшем масштабе и карту всей России на 2-х листах в масштабе около 206 верст в дюйме (1:8700000) Атлас издан в виде книги параллельными изданиями на русском и латинском языках с приложением Генеральной Карты.

При создании атласа Делиля большое внимание уделялось математической основе карт. Впервые в России проводилось астрономическое определение координат опорных пунктов. В таблице с координатами указан способ их определения – "по достоверным основаниям" либо "при сочинении карты" В течение XVIII века в общей сложности было сделано 67 полных астрономических определений координат, относящихся к наиболее важным городам России, а также выполнено 118 определений пунктов по широте. На территории Крыма были определены 3 пункта.

Со второй половины XVIII в. роль главного картографо-геодезического учреждения России постепенно стало выполнять Военное ведомство

В 1763 г. был создан Особый Генеральный штаб. Туда были отобраны несколько десятков офицеров, которыеофицеры командировались для снятия районов расположения войск, маршрутов их возможного следования, дорог, по которым проходили сообщения воинскими подразделениями. По сути эти офицеры были первыми российскими военными топографами, которые выполнили первичный объем работ по картографированию страны.

В 1797 г. было учреждено Депо карт. В декабре 1798 г. Депо получило право контроля над всеми топографическими и картографическими работами в империи, а в 1800 г. к нему был присоединен Географический департамент. Все это сделало Депо карт центральным картографическим учреждением страны. В 1810 г. Депо карт перешло в ведение военного министерства.

8 февраля (27 января по старому стилю) 1812 г., когда было высочайшее утверждено «Положение для Военного Топографического Депо» (далее ВТД), в которое Депо карт вошло как особое отделение – архив военно-топографического депо. Приказом Министра обороны Российской Федерации от 9 ноября 2003 г. становлена дата годового праздника ВТУ ГШ ВС РФ – 8 февраля.

В мае 1816 г. ВТД было введено в состав Главного штаба, при этом директором ВТД назначался начальник Главного штаба. С этого года ВТД (независимо от переименований) постоянно находится в составе Главного или Генерального штаба. ВТД руководило созданным в 1822 году Корпусом топографов (после 1866 года -Корпусом военных топографов)

Важнейшими результатами работ ВТД на протяжении почти целого столетия после его создания являются три большие карты. Первая - специальная карта европейской России на 158 листах, размером 25х19 дюймов, в масштабе 10 верст в одном дюйме (1:420000). Вторая - военно-топографической карты Европейской России в масштабе 3 версты в дюйме (1:126000), проекция карты коническая Бонна, долгота считается от Пулково.

Третья - карта Азиатской России на 8 листах размером 26х19 дюймов, в масштабе 100 верст в дюйме (1:42000000). Кроме этого для части России, особенно для приграничных районов были подготовлены карты в полуверстовом (1:21000) и верстовом (1:42000) масштабе (на эллипсоиде Бесселя и проекции Мюфлинга).

В 1918 г. в состав созданного Всероссийского Главного штаба вводится Военно-топографическое управление (правопреемник ВТД), которое в дальнейшем до 1940 г. принимало разные названия. В подчинении этого управления на ходится и корпус военных топографом. С 1940 г. по настоящее время оно именуется «Военно-топографическое управление Генерального штаба Вооруженных Сил».

В 1923 года Корпус военных топографов был преобразован в военно-топографическая службу.

В 1991 году, была образована Военно-топографическая служба Вооружённых сил России, которая в 2010 году была преобразована в Топографическую службу Вооружённых сил Российской Федерации.

Следует сказать так же о возможности использования топографических карт в исторических исследованиях. Мы будем говорить только о топографических картах, созданных в XVII веке и позднее, построение которых опиралось на математические законы и специально проводившееся систематическое обследование территории.

Общие топографические карты отражают физическое состояние местности и ее топонимику на момент составления карты.

Карты мелких масштабов (более 5 верст в дюйме – мельче 1:200000) возможно использовать для локализации указанных на них объектов, лишь с большой неопределенностью в координатах. Ценность содержащейся информации в возможности выявления изменения топонимики территории, главным образом при ее сохранении. Действительно, отсутствие топонима на более поздней карте может свидетельствовать об исчезновении объекта, изменении названия, либо просто о его ошибочном обозначении, в то же время как его наличие будет подтверждать более старую карту причем, как правило, в таких случаях возможна более точная локализация..

Карты крупных масштабов дают наиболее полную информацию о территории. Они могут быть непосредственно использованы для поиска обозначенных на них и сохранившихся до настоящего времени объектов. Развалины построек являются одним из элементов, входящим в легенду топографических карт, и, хотя, лишь немногие из обозначенных развалин относятся к памятникам археологии, их идентификация является вопросом, заслуживающим рассмотрения.

Координаты сохранившихся объектов, определенные по топографическим картам СССР, либо путем непосредственных измерений при помощи глобальной космической системы местоопределения (GPS), могут быть использованы для привязки старых карт к современным системам координат. Однако даже карты начала-середины XIX века могут на отдельных участках территории содержать значительные искажения пропорций местности и процедура привязки карт состоит не только из соотнесений начал отсчета координат, но требует неравномерного растяжения или сжатия отдельных участков карты, которое осуществляется на основе знания координат большого количества опорных точек (так называемая трансформация изображения карты).

После проведения привязки, возможно, осуществить сравнение знаков на карте, с объектами присутствующими на местности в настоящее время, либо существовавшими в периоды предшествующие или последующие времени ее создания. Для этого необходимо производить сопоставление имеющихся карт разных периодов и масштабов.

Крупномасштабные топографические карты XIX века представляются весьма полезными при работе с межевыми планами XVIII - XIX веков, как связующее звено между этими планами и крупномасштабными картами СССР. Межевые планы составлялись во многих случаях без обоснования на опорных пунктах, с ориентировкой по магнитному меридиану. В силу изменений характера местности, вызванных природными факторами и деятельностью человека, непосредственное сопоставление межевых и прочих детальных планов прошлого века и карт XX века не всегда возможно, однако сопоставление детальных планов прошлого века с современной им топографической картой представляется более простым.

Еще одна интересная возможность применения крупномасштабных карт их использование для изучения изменений контуров берега. За последние 2,5 тысячи лет уровень, например, Черного моря повысился, как минимум на несколько метров. Даже за прошедшие с момента создания первых карт Крыма в ВТД два столетия, положение береговой линии в ряде мест могло сместиться на расстояние от нескольких десятков до сотен метров, главным образов вследствие абразии. Такие изменения вполне соизмеримы с размерами достаточно крупных по античным меркам поселений. Выявление поглощенных морем участков территории может способствовать открытию новых археологических памятников.

Естественно, что основными источниками по территории Российской империи для указанных целей, могут выступать трехверстная и верстовая карты. Использование геоинформационных технологий позволяет накладывать друг на друга и привязывать их к современным картам, совмещать слои крупномасштабных топографических карт различного времени и далее дробить их на планы. Причем планы создаваемые сейчас, как и планы XX века, окажутся привязанными к планам XIX века.


Современные значения параметров Земли: Экваториальный радиус, 6378 км. Полярный радиус, 6357 км. Средний радиус Земли, 6371 км. Длина экватора, 40076 км. Длина меридиана, 40008 км...

Здесь, конечно, надо учитывать, что величина самого «стадия» вопрос дискуссионный.

Диоптр - прибор, служащий для направления (визирования) известной части угломерного инструмента на данный предмет. Направляемая часть снабжается обыкновенно двумя Д. - глазным , с узким прорезом, и предметным , с широким прорезом и волоском, натянутым посередине (http://www.wikiznanie.ru/ru-wz/index.php/Диоптр).

По материалам сайта http://ru.wikipedia.org/wiki/Советская _система_разгравки_и_номенклатуры_топографических_карт#cite_note-1

Герхард Меркатор (1512 - 1594) - латинизированное имя Герарда Кремера (и латинская, и германская фамилии означают «купец»), фламандского картографа и географа.

Описание зарамочного оформления приводится по работе: «Топография с основами геодезии». Под ред. А.С.Харченко и А.П.Божок. М - 1986

С 1938 года в течении 30 лет ВТУ (при Сталине, Маленкове, Хрущеве, Брежневе) возглавлял генерал М.К.Кудрявцев. Никто на подобной должности ни в одной армии мира такое время не держался.

Картографи-ческие проекции — это математические способы изображения на плоскости поверхности земного шара (эллипсоида).

Точнее всего форму Зем-ли передает глобус , потому что он такой же шарообраз-ный, как наша планета . Но глобусы занимают много места, их трудно брать в дорогу, нель-зя вложить в книгу. Они имеют очень мелкий масштаб , на них нельзя подробно показать небольшой участок земной поверхнос-ти.

Картографических проек-ций существует множество. Самые распространённые — азимутальная , цилиндрическая , коническая . В зависимости от вида картографической проекции наибольшие искажения могут быть в одном или другом месте карты, а градусная сеть может выглядеть по-разному.

Какую проекцию выбрать, зави-сит от назначения карты, от размера изображаемой терри-тории и широты, на которой она расположена. Например, для вытянутых в средних ши-ротах стран, таких, как Рос-сия, удобно использовать коническую проекцию, для полярных областей азимутальную, а для карт мира, отдельных материков, океанов часто применяют цилиндрическую проекцию.